C4graphGraph forms for C4 [ 384, 333 ] = PL(ATD[8,1]#ATD[24,6])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 333 ] = PL(ATD[8,1]#ATD[24,6]).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {192, 211}, {156, 220}, {179, 243}, {157, 220}, {159, 222}, {143, 205}, {145, 211}, {172, 239}, {181, 246}, {153, 221}, {177, 245}, {132, 193}, {166, 227}, {162, 228}, {146, 213}, {141, 197}, {177, 249}, {164, 236}, {162, 234}, {156, 212}, {151, 221}, {177, 251}, {152, 210}, {174, 226}, {178, 254}, {158, 208}, {133, 202}, {176, 255}, {136, 216}, {131, 209}, {176, 227}, {189, 233}, {163, 246}, {184, 237}, {183, 226}, {128, 215}, {140, 214}, {169, 244}, {134, 216}, {161, 254}, {135, 231}, {167, 199}, {148, 244}, {128, 225}, {189, 220}, {163, 194}, {154, 251}, {139, 233}, {145, 243}, {146, 241}, {184, 220}, {178, 215}, {181, 208}, {155, 253}, {183, 209}, {162, 196}, {177, 214}, {159, 247}, {170, 195}, {132, 238}, {135, 235}, {183, 219}, {173, 193}, {150, 251}, {134, 232}, {141, 227}, {154, 245}, {160, 208}, {138, 251}, {148, 231}, {170, 217}, {149, 230}, {188, 200}, {191, 203}, {140, 249}, {161, 214}, {162, 213}, {146, 234}, {172, 212}, {151, 239}, {153, 226}, {168, 212}, {141, 242}, {174, 209}, {173, 210}, {167, 216}, {147, 236}, {74, 202}, {120, 248}, {100, 230}, {107, 232}, {109, 238}, {64, 197}, {82, 215}, {75, 206}, {112, 246}, {123, 253}, {93, 218}, {112, 247}, {121, 254}, {109, 229}, {119, 255}, {94, 215}, {74, 193}, {80, 219}, {75, 199}, {108, 224}, {85, 216}, {105, 228}, {111, 226}, {81, 223}, {116, 250}, {65, 208}, {102, 247}, {84, 198}, {85, 199}, {91, 201}, {93, 207}, {107, 249}, {71, 212}, {85, 198}, {107, 248}, {97, 245}, {92, 201}, {72, 222}, {101, 254}, {104, 243}, {111, 244}, {88, 196}, {108, 240}, {96, 253}, {110, 241}, {121, 230}, {77, 237}, {106, 202}, {70, 228}, {124, 222}, {79, 236}, {67, 231}, {84, 240}, {69, 225}, {99, 199}, {108, 200}, {87, 241}, {101, 195}, {76, 235}, {98, 197}, {69, 237}, {93, 245}, {64, 233}, {115, 218}, {97, 203}, {119, 221}, {111, 196}, {68, 232}, {88, 244}, {105, 196}, {97, 207}, {98, 204}, {89, 246}, {79, 253}, {101, 214}, {84, 224}, {120, 204}, {86, 225}, {105, 222}, {86, 238}, {113, 203}, {95, 227}, {96, 221}, {89, 230}, {90, 229}, {124, 195}, {10, 202}, {25, 217}, {62, 252}, {14, 205}, {42, 238}, {11, 206}, {52, 241}, {32, 231}, {63, 248}, {17, 217}, {54, 255}, {50, 248}, {54, 252}, {7, 204}, {60, 247}, {50, 249}, {32, 235}, {9, 194}, {30, 210}, {41, 229}, {18, 223}, {2, 205}, {13, 194}, {34, 242}, {35, 242}, {1, 211}, {8, 218}, {14, 219}, {19, 198}, {5, 211}, {12, 218}, {51, 228}, {2, 219}, {12, 213}, {8, 210}, {40, 243}, {8, 213}, {56, 229}, {27, 198}, {26, 250}, {47, 207}, {40, 200}, {62, 223}, {59, 217}, {12, 232}, {6, 224}, {35, 197}, {13, 235}, {27, 252}, {41, 206}, {2, 234}, {37, 205}, {36, 204}, {23, 255}, {10, 224}, {1, 234}, {23, 252}, {39, 201}, {47, 193}, {63, 207}, {46, 223}, {57, 200}, {56, 201}, {29, 239}, {57, 203}, {3, 240}, {9, 250}, {4, 240}, {58, 206}, {55, 194}, {5, 242}, {13, 250}, {21, 237}, {59, 195}, {21, 239}, {16, 236}, {45, 209}, {20, 233}, {30, 225}, {34, 290}, {80, 336}, {76, 332}, {48, 304}, {110, 366}, {111, 367}, {38, 295}, {88, 345}, {44, 301}, {123, 378}, {18, 272}, {52, 310}, {73, 330}, {116, 375}, {45, 297}, {62, 314}, {86, 339}, {103, 354}, {87, 337}, {81, 342}, {4, 268}, {57, 305}, {51, 315}, {89, 337}, {24, 273}, {46, 295}, {44, 293}, {42, 288}, {50, 312}, {45, 294}, {104, 355}, {73, 325}, {4, 265}, {66, 335}, {43, 294}, {96, 365}, {117, 376}, {61, 307}, {81, 351}, {73, 327}, {71, 329}, {100, 362}, {120, 374}, {3, 268}, {143, 384}, {34, 301}, {33, 302}, {32, 303}, {7, 279}, {16, 256}, {15, 287}, {95, 333}, {110, 380}, {10, 281}, {65, 338}, {41, 314}, {32, 307}, {121, 362}, {56, 300}, {78, 346}, {125, 361}, {69, 339}, {86, 320}, {117, 354}, {19, 267}, {68, 348}, {61, 293}, {24, 256}, {22, 270}, {2, 283}, {62, 295}, {53, 300}, {40, 305}, {20, 269}, {99, 378}, {1, 283}, {122, 352}, {125, 359}, {34, 313}, {59, 288}, {126, 357}, {3, 287}, {125, 353}, {126, 354}, {21, 264}, {58, 292}, {89, 327}, {64, 350}, {95, 321}, {6, 281}, {72, 343}, {94, 321}, {123, 356}, {77, 365}, {84, 372}, {82, 370}, {27, 314}, {85, 372}, {59, 282}, {3, 289}, {79, 365}, {68, 358}, {10, 296}, {92, 382}, {79, 364}, {11, 303}, {53, 273}, {23, 307}, {107, 335}, {15, 298}, {126, 347}, {38, 256}, {67, 357}, {98, 324}, {115, 341}, {5, 290}, {52, 275}, {43, 268}, {124, 347}, {33, 265}, {121, 336}, {127, 342}, {126, 340}, {31, 308}, {51, 280}, {47, 259}, {80, 380}, {15, 290}, {48, 285}, {109, 320}, {15, 289}, {125, 339}, {76, 355}, {16, 288}, {72, 376}, {60, 268}, {49, 257}, {42, 282}, {100, 342}, {105, 347}, {36, 279}, {83, 352}, {103, 340}, {30, 298}, {80, 356}, {67, 375}, {117, 321}, {19, 294}, {49, 260}, {22, 291}, {127, 330}, {18, 293}, {55, 256}, {52, 259}, {112, 327}, {118, 321}, {23, 303}, {77, 373}, {70, 382}, {24, 288}, {127, 326}, {5, 319}, {53, 271}, {45, 278}, {83, 360}, {100, 351}, {114, 329}, {118, 333}, {31, 291}, {63, 259}, {98, 350}, {120, 324}, {25, 292}, {77, 368}, {43, 278}, {27, 294}, {1, 319}, {26, 293}, {76, 371}, {57, 262}, {110, 337}, {113, 334}, {43, 363}, {4, 325}, {81, 272}, {60, 381}, {39, 358}, {17, 336}, {13, 332}, {109, 300}, {124, 317}, {91, 281}, {112, 306}, {66, 257}, {114, 305}, {94, 282}, {6, 323}, {50, 375}, {48, 373}, {55, 369}, {66, 260}, {91, 285}, {106, 300}, {26, 349}, {66, 266}, {115, 315}, {127, 311}, {63, 374}, {99, 297}, {37, 366}, {95, 276}, {118, 317}, {55, 379}, {56, 372}, {53, 376}, {69, 264}, {64, 269}, {6, 328}, {25, 343}, {118, 312}, {18, 349}, {46, 353}, {108, 291}, {31, 334}, {87, 261}, {37, 374}, {51, 352}, {39, 372}, {90, 265}, {36, 368}, {71, 275}, {102, 306}, {11, 349}, {88, 270}, {49, 359}, {28, 331}, {60, 363}, {29, 330}, {39, 383}, {49, 361}, {101, 317}, {72, 273}, {82, 267}, {93, 260}, {113, 296}, {7, 349}, {78, 276}, {24, 322}, {29, 326}, {65, 285}, {38, 379}, {83, 270}, {20, 331}, {106, 309}, {8, 360}, {87, 311}, {35, 323}, {17, 369}, {90, 314}, {92, 316}, {19, 370}, {74, 299}, {44, 333}, {119, 278}, {31, 381}, {75, 297}, {74, 296}, {48, 338}, {92, 318}, {122, 280}, {14, 365}, {33, 325}, {78, 298}, {75, 303}, {102, 258}, {28, 377}, {91, 318}, {106, 271}, {122, 287}, {28, 378}, {38, 320}, {9, 366}, {94, 313}, {97, 262}, {116, 275}, {25, 369}, {44, 324}, {61, 340}, {99, 266}, {22, 381}, {82, 313}, {41, 322}, {35, 328}, {114, 281}, {119, 284}, {78, 290}, {83, 319}, {17, 380}, {26, 375}, {20, 377}, {104, 263}, {114, 285}, {117, 282}, {11, 379}, {61, 333}, {46, 350}, {42, 346}, {123, 267}, {40, 345}, {71, 310}, {90, 296}, {116, 262}, {122, 264}, {54, 325}, {65, 309}, {22, 352}, {58, 332}, {30, 360}, {29, 363}, {96, 278}, {47, 344}, {115, 260}, {28, 356}, {58, 322}, {36, 348}, {113, 265}, {103, 286}, {70, 316}, {67, 312}, {103, 284}, {7, 379}, {54, 330}, {16, 364}, {70, 315}, {73, 308}, {104, 277}, {14, 368}, {33, 351}, {21, 363}, {102, 280}, {9, 374}, {152, 280}, {158, 286}, {148, 277}, {158, 284}, {191, 317}, {133, 262}, {181, 310}, {179, 304}, {147, 279}, {165, 289}, {155, 287}, {151, 274}, {186, 319}, {173, 299}, {182, 304}, {191, 312}, {153, 274}, {12, 384}, {168, 292}, {149, 283}, {155, 267}, {146, 259}, {175, 318}, {166, 311}, {155, 264}, {160, 309}, {163, 310}, {131, 277}, {192, 342}, {133, 275}, {150, 257}, {136, 273}, {152, 258}, {187, 289}, {168, 306}, {156, 263}, {142, 274}, {145, 269}, {141, 272}, {174, 307}, {170, 308}, {172, 306}, {157, 258}, {188, 291}, {175, 271}, {176, 272}, {140, 301}, {166, 261}, {37, 384}, {160, 261}, {139, 302}, {185, 286}, {128, 298}, {171, 257}, {131, 297}, {161, 266}, {165, 270}, {176, 284}, {137, 292}, {185, 276}, {130, 301}, {133, 309}, {142, 318}, {129, 304}, {175, 286}, {154, 299}, {137, 315}, {169, 283}, {166, 276}, {164, 279}, {136, 316}, {179, 263}, {154, 302}, {140, 313}, {135, 305}, {185, 271}, {144, 295}, {134, 316}, {189, 263}, {184, 258}, {144, 299}, {169, 277}, {175, 274}, {138, 308}, {180, 266}, {144, 302}, {186, 261}, {147, 339}, {190, 382}, {68, 384}, {187, 383}, {149, 337}, {138, 334}, {151, 338}, {130, 324}, {190, 376}, {180, 370}, {145, 345}, {171, 355}, {159, 343}, {157, 341}, {134, 335}, {187, 370}, {136, 322}, {173, 359}, {164, 366}, {180, 383}, {184, 373}, {192, 269}, {135, 329}, {144, 320}, {182, 358}, {169, 377}, {190, 367}, {142, 348}, {186, 360}, {163, 369}, {183, 356}, {139, 351}, {189, 361}, {167, 371}, {156, 329}, {158, 326}, {171, 371}, {164, 380}, {188, 357}, {161, 378}, {132, 344}, {190, 354}, {137, 341}, {150, 331}, {132, 346}, {178, 364}, {137, 343}, {129, 350}, {129, 353}, {171, 331}, {131, 355}, {138, 362}, {143, 367}, {139, 361}, {186, 344}, {178, 336}, {159, 381}, {185, 346}, {130, 358}, {168, 332}, {188, 347}, {182, 348}, {128, 364}, {149, 377}, {165, 328}, {170, 327}, {157, 371}, {179, 323}, {143, 382}, {191, 334}, {148, 357}, {147, 353}, {167, 341}, {181, 326}, {187, 328}, {129, 373}, {182, 323}, {153, 367}, {192, 311}, {160, 344}, {174, 340}, {180, 335}, {150, 362}, {165, 345}, {130, 383}, {142, 368}, {172, 338}, {152, 359} }>;

(II) A more general form is to represent the graph as the orbit of {192, 211} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 13)(6, 17)(7, 19)(10, 25)(11, 27)(12, 30)(14, 34)(15, 37)(16, 39)(18, 45)(21, 50)(22, 52)(24, 56)(26, 43)(28, 64)(29, 67)(31, 71)(32, 54)(33, 76)(35, 80)(36, 82)(38, 85)(40, 89)(42, 92)(44, 96)(46, 99)(47, 51)(48, 101)(55, 84)(57, 112)(58, 90)(59, 91)(60, 116)(61, 119)(62, 75)(63, 122)(65, 124)(66, 125)(68, 128)(69, 107)(70, 132)(72, 106)(73, 135)(74, 137)(77, 140)(78, 143)(79, 130)(81, 131)(83, 146)(86, 134)(87, 88)(93, 152)(94, 142)(95, 153)(97, 102)(98, 123)(100, 104)(105, 160)(108, 163)(109, 136)(110, 165)(111, 166)(113, 168)(114, 170)(115, 173)(117, 175)(118, 151)(120, 155)(121, 179)(126, 158)(127, 148)(129, 161)(133, 159)(138, 156)(139, 171)(141, 183)(144, 167)(145, 149)(147, 180)(150, 189)(154, 157)(162, 186)(164, 187)(169, 192)(172, 191)(174, 176)(177, 184)(178, 182)(181, 188)(185, 190)(193, 315)(194, 240)(195, 285)(196, 261)(197, 356)(198, 379)(199, 295)(200, 246)(201, 288)(202, 343)(203, 306)(204, 267)(205, 290)(206, 314)(207, 280)(208, 347)(209, 272)(210, 218)(211, 283)(212, 334)(213, 360)(214, 373)(215, 348)(216, 320)(217, 281)(219, 242)(220, 251)(221, 333)(222, 309)(223, 297)(224, 369)(225, 232)(226, 227)(228, 344)(229, 322)(230, 243)(231, 330)(233, 331)(234, 319)(235, 325)(236, 383)(237, 249)(238, 316)(239, 312)(241, 270)(244, 311)(245, 258)(247, 262)(248, 264)(250, 268)(252, 303)(253, 324)(254, 304)(255, 307)(256, 372)(257, 361)(259, 352)(260, 359)(263, 362)(265, 332)(266, 353)(269, 377)(271, 376)(273, 300)(274, 321)(275, 381)(276, 367)(277, 342)(278, 293)(279, 370)(282, 318)(284, 340)(286, 354)(287, 374)(289, 366)(291, 310)(292, 296)(294, 349)(298, 384)(299, 341)(301, 365)(302, 371)(305, 327)(308, 329)(313, 368)(317, 338)(323, 336)(326, 357)(328, 380)(335, 339)(337, 345)(346, 382)(350, 378)(351, 355)(358, 364)(363, 375)
b: (1, 3)(2, 4)(5, 15)(6, 8)(7, 38)(9, 41)(10, 12)(11, 55)(13, 58)(14, 33)(16, 18)(17, 23)(19, 87)(20, 21)(22, 88)(24, 26)(25, 32)(27, 110)(28, 29)(30, 35)(31, 111)(34, 78)(36, 144)(37, 90)(39, 47)(40, 51)(42, 44)(43, 149)(45, 89)(46, 147)(48, 49)(50, 53)(52, 85)(54, 80)(56, 63)(57, 70)(59, 61)(60, 169)(62, 164)(64, 69)(65, 66)(67, 72)(68, 74)(71, 167)(73, 183)(75, 163)(76, 168)(77, 139)(79, 81)(82, 166)(83, 165)(84, 146)(86, 98)(91, 93)(92, 97)(94, 95)(96, 100)(99, 181)(101, 103)(102, 104)(105, 188)(106, 107)(108, 162)(109, 120)(112, 131)(113, 143)(114, 115)(116, 136)(117, 118)(119, 121)(122, 145)(123, 127)(124, 126)(125, 129)(128, 141)(130, 132)(133, 134)(135, 137)(138, 153)(140, 185)(142, 154)(148, 159)(150, 151)(152, 179)(155, 192)(156, 157)(158, 161)(160, 180)(170, 174)(171, 172)(173, 182)(175, 177)(176, 178)(184, 189)(186, 187)(190, 191)(193, 358)(194, 206)(195, 340)(196, 291)(197, 225)(198, 241)(199, 310)(200, 228)(201, 207)(202, 232)(203, 382)(204, 320)(205, 265)(208, 266)(209, 327)(210, 323)(211, 287)(212, 371)(213, 224)(214, 286)(215, 227)(216, 275)(217, 307)(218, 281)(219, 325)(221, 362)(222, 357)(223, 236)(226, 308)(229, 374)(230, 278)(231, 343)(233, 237)(234, 240)(235, 292)(238, 324)(239, 331)(242, 298)(243, 280)(244, 381)(245, 318)(246, 297)(247, 277)(248, 300)(249, 271)(250, 322)(251, 274)(252, 380)(253, 342)(254, 284)(255, 336)(256, 349)(257, 338)(258, 263)(259, 372)(260, 285)(261, 370)(262, 316)(264, 269)(267, 311)(268, 283)(272, 364)(273, 375)(276, 313)(279, 295)(282, 333)(288, 293)(289, 319)(294, 337)(296, 384)(299, 348)(301, 346)(302, 368)(303, 369)(304, 359)(305, 315)(306, 355)(309, 335)(312, 376)(314, 366)(317, 354)(326, 378)(328, 360)(329, 341)(330, 356)(334, 367)(339, 350)(344, 383)(345, 352)(351, 365)(361, 373)(363, 377)
c: (3, 6)(4, 10)(7, 16)(8, 20)(9, 17)(11, 24)(12, 28)(13, 25)(15, 35)(18, 42)(19, 39)(21, 48)(22, 40)(23, 53)(26, 59)(27, 56)(29, 65)(30, 64)(31, 57)(32, 72)(33, 74)(36, 79)(37, 80)(43, 91)(44, 94)(45, 92)(46, 86)(47, 100)(50, 101)(51, 104)(52, 89)(54, 106)(60, 114)(61, 117)(62, 109)(63, 121)(67, 124)(68, 123)(69, 129)(70, 131)(71, 112)(73, 133)(75, 136)(76, 137)(78, 141)(81, 132)(82, 130)(83, 145)(93, 150)(96, 142)(97, 138)(98, 128)(99, 134)(102, 156)(105, 148)(107, 161)(115, 171)(116, 170)(119, 175)(120, 178)(122, 179)(127, 160)(135, 159)(139, 173)(143, 183)(146, 149)(152, 189)(155, 182)(162, 169)(174, 190)(176, 185)(186, 192)(193, 351)(194, 369)(195, 375)(196, 244)(197, 298)(198, 372)(199, 216)(200, 291)(201, 294)(202, 325)(203, 334)(204, 364)(205, 219)(206, 322)(207, 362)(208, 326)(209, 382)(210, 233)(211, 319)(212, 306)(213, 377)(214, 249)(215, 324)(217, 250)(218, 331)(220, 258)(221, 274)(222, 231)(223, 238)(224, 240)(225, 350)(226, 367)(227, 276)(228, 277)(229, 314)(230, 259)(232, 378)(234, 283)(235, 343)(236, 279)(237, 373)(239, 338)(241, 337)(242, 290)(243, 352)(245, 251)(246, 310)(247, 329)(248, 254)(252, 300)(253, 348)(255, 271)(256, 379)(257, 260)(261, 311)(262, 308)(263, 280)(264, 304)(265, 296)(266, 335)(267, 358)(268, 281)(269, 360)(270, 345)(272, 346)(273, 303)(275, 327)(278, 318)(282, 293)(284, 286)(285, 363)(287, 323)(288, 349)(289, 328)(292, 332)(295, 320)(297, 316)(299, 302)(301, 313)(305, 381)(307, 376)(309, 330)(312, 317)(315, 355)(321, 333)(336, 374)(339, 353)(340, 354)(341, 371)(342, 344)(347, 357)(356, 384)(359, 361)(365, 368)(366, 380)(370, 383)
d: (1, 2)(3, 7)(4, 11)(5, 14)(6, 16)(8, 12)(9, 22)(10, 24)(13, 31)(15, 36)(17, 40)(18, 43)(19, 46)(20, 28)(21, 44)(23, 54)(25, 57)(26, 60)(27, 62)(29, 61)(30, 68)(32, 73)(33, 75)(34, 77)(35, 79)(37, 83)(38, 84)(39, 86)(41, 90)(42, 91)(45, 81)(47, 70)(48, 94)(49, 66)(50, 102)(51, 63)(52, 105)(53, 106)(55, 108)(56, 109)(58, 113)(59, 114)(64, 123)(65, 117)(67, 112)(69, 130)(71, 124)(72, 133)(74, 136)(76, 138)(78, 142)(80, 145)(82, 129)(85, 144)(87, 111)(88, 110)(89, 148)(92, 132)(93, 115)(95, 151)(96, 141)(97, 137)(98, 155)(99, 139)(100, 131)(101, 156)(103, 158)(104, 121)(107, 152)(116, 159)(118, 172)(119, 176)(120, 122)(125, 180)(126, 181)(127, 174)(128, 182)(134, 173)(135, 170)(140, 184)(143, 186)(146, 162)(147, 187)(149, 169)(150, 171)(153, 166)(154, 167)(157, 177)(160, 190)(161, 189)(163, 188)(164, 165)(168, 191)(175, 185)(178, 179)(183, 192)(193, 316)(194, 291)(195, 329)(196, 241)(197, 253)(198, 295)(199, 302)(200, 369)(201, 238)(202, 273)(203, 292)(204, 287)(205, 319)(206, 265)(207, 315)(208, 354)(209, 342)(210, 232)(211, 219)(212, 317)(214, 220)(215, 304)(216, 299)(217, 305)(221, 227)(222, 275)(223, 294)(224, 256)(225, 358)(226, 311)(228, 259)(230, 277)(231, 327)(233, 378)(235, 308)(236, 328)(237, 301)(239, 333)(240, 379)(242, 365)(243, 336)(244, 337)(245, 341)(246, 357)(247, 375)(248, 280)(249, 258)(250, 381)(251, 371)(254, 263)(261, 367)(262, 343)(264, 324)(266, 361)(267, 350)(268, 349)(269, 356)(270, 366)(272, 278)(274, 276)(279, 289)(281, 288)(282, 285)(290, 368)(293, 363)(296, 322)(297, 351)(298, 348)(303, 325)(306, 312)(307, 330)(309, 376)(310, 347)(313, 373)(318, 346)(320, 372)(321, 338)(323, 364)(326, 340)(332, 334)(335, 359)(339, 383)(344, 382)(345, 380)(352, 374)(353, 370)(355, 362)(360, 384)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 333 ]
384
-1 319 211 234 283
-2 234 205 283 219
-3 287 289 268 240
-4 265 268 325 240
-5 242 319 211 290
-6 224 323 281 328
-7 279 379 204 349
-8 210 213 360 218
-9 374 366 194 250
-10 202 224 281 296
-11 379 303 206 349
-12 232 213 218 384
-13 332 235 194 250
-14 365 368 205 219
-15 287 298 289 290
-16 364 288 256 236
-17 336 369 380 217
-18 223 293 272 349
-19 198 267 370 294
-20 331 233 377 269
-21 264 363 237 239
-22 352 291 270 381
-23 255 303 252 307
-24 288 256 322 273
-25 343 292 369 217
-26 375 293 250 349
-27 198 314 294 252
-28 331 377 356 378
-29 330 363 326 239
-30 210 298 225 360
-31 308 334 291 381
-32 231 235 303 307
-33 265 302 325 351
-34 242 290 301 313
-35 242 323 328 197
-36 279 368 204 348
-37 374 366 205 384
-38 320 256 379 295
-39 201 358 372 383
-40 243 200 345 305
-41 322 314 206 229
-42 288 346 238 282
-43 363 278 268 294
-44 333 301 324 293
-45 209 297 278 294
-46 353 223 295 350
-47 344 193 259 207
-48 304 338 285 373
-49 257 260 359 361
-50 375 312 248 249
-51 352 280 315 228
-52 275 310 259 241
-53 376 300 271 273
-54 330 255 325 252
-55 256 379 369 194
-56 201 300 229 372
-57 200 203 305 262
-58 332 322 292 206
-59 288 282 195 217
-60 363 268 247 381
-61 333 293 307 340
-62 223 314 295 252
-63 374 248 259 207
-64 233 269 350 197
-65 309 338 208 285
-66 266 257 335 260
-67 231 375 312 357
-68 232 358 348 384
-69 264 225 237 339
-70 315 228 316 382
-71 275 310 212 329
-72 222 343 376 273
-73 308 330 325 327
-74 299 202 193 296
-75 297 199 303 206
-76 332 355 235 371
-77 365 368 237 373
-78 276 298 290 346
-79 253 364 365 236
-80 356 336 380 219
-81 342 223 272 351
-82 267 313 215 370
-83 319 352 270 360
-84 198 224 240 372
-85 198 199 216 372
-86 320 225 238 339
-87 311 337 261 241
-88 244 345 270 196
-89 246 337 327 230
-90 265 314 229 296
-91 201 281 285 318
-92 201 316 382 318
-93 245 260 207 218
-94 321 313 215 282
-95 276 321 333 227
-96 253 221 365 278
-97 245 203 207 262
-98 324 204 350 197
-99 297 199 266 378
-100 342 230 351 362
-101 254 214 195 317
-102 247 258 280 306
-103 286 354 284 340
-104 243 277 355 263
-105 222 347 228 196
-106 309 300 202 271
-107 232 335 248 249
-108 200 224 291 240
-109 320 300 238 229
-110 366 380 337 241
-111 244 367 226 196
-112 246 247 327 306
-113 265 334 203 296
-114 281 305 285 329
-115 341 260 315 218
-116 275 375 250 262
-117 321 354 376 282
-118 321 333 312 317
-119 221 255 278 284
-120 374 324 204 248
-121 254 336 230 362
-122 264 352 287 280
-123 253 267 356 378
-124 222 347 195 317
-125 353 359 339 361
-126 354 357 347 340
-127 330 342 311 326
-128 298 364 225 215
-129 353 304 350 373
-130 301 324 358 383
-131 209 297 277 355
-132 344 346 193 238
-133 275 309 202 262
-134 232 335 216 316
-135 231 235 305 329
-136 322 216 316 273
-137 341 343 292 315
-138 308 334 251 362
-139 233 302 361 351
-140 301 214 313 249
-141 242 227 272 197
-142 368 348 274 318
-143 367 205 382 384
-144 320 299 302 295
-145 243 211 345 269
-146 234 213 259 241
-147 353 279 236 339
-148 231 244 277 357
-149 377 337 283 230
-150 331 257 251 362
-151 221 239 338 274
-152 210 258 280 359
-153 221 367 226 274
-154 299 245 302 251
-155 253 264 287 267
-156 220 212 263 329
-157 220 341 258 371
-158 286 326 284 208
-159 222 343 247 381
-160 309 344 261 208
-161 254 266 378 214
-162 234 213 228 196
-163 310 246 369 194
-164 366 279 236 380
-165 289 345 270 328
-166 276 311 227 261
-167 341 199 216 371
-168 332 212 292 306
-169 244 277 377 283
-170 308 195 217 327
-171 331 355 257 371
-172 212 239 338 306
-173 210 299 193 359
-174 209 226 307 340
-175 286 271 274 318
-176 255 227 272 284
-177 245 214 249 251
-178 254 364 215 336
-179 243 323 304 263
-180 266 335 370 383
-181 310 246 326 208
-182 323 358 304 348
-183 209 356 226 219
-184 220 258 237 373
-185 286 276 346 271
-186 319 344 261 360
-187 289 370 328 383
-188 200 291 357 347
-189 220 233 361 263
-190 354 376 367 382
-191 312 334 203 317
-192 342 211 311 269
-193 132 47 74 173
-194 55 13 9 163
-195 101 124 59 170
-196 88 111 105 162
-197 35 64 141 98
-198 27 84 19 85
-199 99 167 85 75
-200 188 57 40 108
-201 56 91 92 39
-202 133 106 74 10
-203 57 113 191 97
-204 36 7 98 120
-205 143 2 14 37
-206 11 58 41 75
-207 47 93 63 97
-208 158 181 160 65
-209 45 183 174 131
-210 8 30 173 152
-211 1 145 5 192
-212 156 168 71 172
-213 12 146 8 162
-214 177 101 161 140
-215 178 82 94 128
-216 134 167 136 85
-217 25 59 170 17
-218 12 93 115 8
-219 2 14 80 183
-220 156 189 157 184
-221 96 151 119 153
-222 124 159 72 105
-223 46 81 18 62
-224 6 84 108 10
-225 69 128 30 86
-226 111 183 174 153
-227 176 166 95 141
-228 70 105 51 162
-229 56 90 41 109
-230 121 89 100 149
-231 67 135 148 32
-232 12 68 134 107
-233 189 139 20 64
-234 1 2 146 162
-235 13 135 32 76
-236 79 147 16 164
-237 77 69 184 21
-238 132 42 86 109
-239 29 172 151 21
-240 3 4 84 108
-241 110 146 52 87
-242 34 35 5 141
-243 145 179 104 40
-244 88 111 169 148
-245 154 177 93 97
-246 89 112 181 163
-247 112 102 60 159
-248 50 63 107 120
-249 177 50 107 140
-250 13 26 116 9
-251 154 177 138 150
-252 23 27 62 54
-253 155 79 123 96
-254 121 101 178 161
-255 176 23 119 54
-256 55 24 16 38
-257 66 49 171 150
-258 102 157 184 152
-259 47 146 52 63
-260 66 49 93 115
-261 166 160 87 186
-262 133 57 116 97
-263 156 189 179 104
-264 122 155 69 21
-265 33 90 113 4
-266 66 99 180 161
-267 155 123 82 19
-268 3 4 60 43
-269 145 192 20 64
-270 22 88 165 83
-271 106 53 185 175
-272 176 81 18 141
-273 24 136 72 53
-274 151 142 153 175
-275 133 71 116 52
-276 78 166 95 185
-277 169 104 148 131
-278 45 96 119 43
-279 36 147 7 164
-280 122 102 51 152
-281 91 114 6 10
-282 59 94 117 42
-283 1 2 169 149
-284 176 103 158 119
-285 91 48 114 65
-286 103 158 185 175
-287 122 155 3 15
-288 24 59 16 42
-289 165 187 3 15
-290 34 78 15 5
-291 22 188 31 108
-292 25 58 168 137
-293 44 26 61 18
-294 45 27 19 43
-295 144 46 38 62
-296 90 113 74 10
-297 99 45 75 131
-298 78 15 128 30
-299 154 144 74 173
-300 56 106 53 109
-301 44 34 140 130
-302 33 154 144 139
-303 11 23 75 32
-304 179 48 182 129
-305 57 135 114 40
-306 112 102 168 172
-307 23 61 174 32
-308 170 138 73 31
-309 133 160 106 65
-310 71 181 52 163
-311 166 192 127 87
-312 67 191 50 118
-313 34 82 94 140
-314 90 27 62 41
-315 70 115 137 51
-316 134 70 92 136
-317 101 124 191 118
-318 91 92 142 175
-319 1 5 83 186
-320 144 38 86 109
-321 94 95 117 118
-322 24 58 136 41
-323 35 179 6 182
-324 44 130 98 120
-325 33 4 73 54
-326 158 181 127 29
-327 89 112 170 73
-328 165 187 35 6
-329 156 135 114 71
-330 127 29 73 54
-331 28 171 150 20
-332 13 58 168 76
-333 44 61 95 118
-334 113 191 138 31
-335 66 134 180 107
-336 121 178 80 17
-337 110 89 149 87
-338 48 172 151 65
-339 69 125 147 86
-340 103 126 61 174
-341 167 157 115 137
-342 100 81 192 127
-343 25 137 159 72
-344 132 47 160 186
-345 88 165 145 40
-346 132 78 42 185
-347 188 124 126 105
-348 68 36 182 142
-349 11 26 7 18
-350 46 129 64 98
-351 33 100 81 139
-352 22 122 83 51
-353 46 125 147 129
-354 190 103 126 117
-355 104 171 76 131
-356 123 80 28 183
-357 67 188 126 148
-358 68 39 182 130
-359 125 49 173 152
-360 83 8 30 186
-361 189 125 49 139
-362 121 100 138 150
-363 60 29 21 43
-364 79 178 16 128
-365 77 79 14 96
-366 110 37 9 164
-367 143 111 190 153
-368 77 14 36 142
-369 55 25 17 163
-370 187 180 82 19
-371 167 157 171 76
-372 56 39 84 85
-373 77 48 129 184
-374 37 63 9 120
-375 67 26 50 116
-376 190 72 117 53
-377 169 28 149 20
-378 99 123 28 161
-379 11 55 38 7
-380 110 80 17 164
-381 22 60 159 31
-382 143 190 70 92
-383 187 180 39 130
-384 143 12 68 37
0

**************