[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 384, 359 ] =
XI(Rmap(192,6){4,6|8}_12).
(I) Following is a form readable by MAGMA:
g:=Graph<384|{ {173, 237}, {163, 225}, {171, 233}, {188, 255}, {154, 222}, {150,
211}, {153, 220}, {167, 225}, {182, 240}, {128, 199}, {187, 252}, {172, 235},
{168, 229}, {180, 228}, {147, 194}, {181, 228}, {128, 210}, {169, 251}, {145,
197}, {178, 230}, {174, 250}, {172, 248}, {146, 199}, {176, 229}, {147, 198},
{149, 205}, {191, 230}, {181, 239}, {165, 254}, {148, 202}, {148, 244}, {165,
197}, {146, 243}, {145, 242}, {149, 246}, {166, 206}, {185, 208}, {150, 250},
{172, 221}, {174, 223}, {167, 212}, {165, 209}, {184, 207}, {152, 224}, {173,
213}, {154, 226}, {144, 233}, {175, 213}, {171, 208}, {132, 248}, {128, 253},
{172, 211}, {112, 241}, {78, 204}, {115, 240}, {102, 226}, {71, 194}, {98, 231},
{107, 238}, {73, 193}, {97, 232}, {73, 195}, {98, 239}, {74, 196}, {71, 214},
{109, 255}, {75, 216}, {104, 251}, {120, 236}, {90, 207}, {91, 206}, {106, 252},
{70, 209}, {76, 219}, {72, 210}, {74, 215}, {110, 241}, {124, 227}, {107, 203},
{108, 205}, {126, 223}, {76, 238}, {105, 202}, {82, 247}, {83, 249}, {80, 251},
{84, 255}, {64, 236}, {67, 239}, {66, 238}, {65, 237}, {81, 252}, {105, 216},
{89, 235}, {90, 232}, {107, 217}, {68, 240}, {70, 242}, {69, 241}, {88, 237},
{79, 249}, {108, 219}, {67, 250}, {76, 246}, {77, 247}, {72, 243}, {78, 245},
{91, 231}, {75, 244}, {1, 193}, {1, 195}, {6, 196}, {1, 194}, {61, 254}, {8,
203}, {2, 193}, {3, 199}, {9, 204}, {11, 206}, {4, 194}, {15, 201}, {14, 200},
{5, 195}, {1, 198}, {36, 227}, {26, 221}, {10, 205}, {3, 196}, {2, 197}, {22,
222}, {23, 223}, {20, 221}, {48, 249}, {35, 234}, {31, 214}, {29, 212}, {27,
210}, {25, 208}, {2, 200}, {42, 224}, {13, 199}, {12, 198}, {5, 207}, {4, 206},
{3, 201}, {26, 209}, {30, 213}, {7, 203}, {5, 200}, {14, 195}, {7, 202}, {11,
197}, {49, 255}, {19, 221}, {19, 220}, {55, 248}, {28, 211}, {21, 218}, {3,
210}, {44, 253}, {42, 251}, {36, 245}, {10, 219}, {8, 217}, {6, 215}, {4, 214},
{39, 245}, {2, 209}, {45, 254}, {37, 246}, {9, 218}, {60, 232}, {63, 235}, {62,
234}, {61, 233}, {43, 254}, {55, 226}, {6, 208}, {60, 234}, {34, 244}, {24,
207}, {59, 236}, {43, 252}, {42, 253}, {15, 215}, {21, 204}, {46, 247}, {31,
198}, {12, 214}, {16, 202}, {8, 211}, {56, 227}, {57, 229}, {59, 231}, {58,
230}, {9, 212}, {17, 204}, {7, 216}, {18, 205}, {10, 213}, {32, 193}, {4, 231},
{8, 235}, {16, 244}, {19, 247}, {18, 246}, {17, 245}, {9, 236}, {22, 240}, {47,
201}, {23, 241}, {10, 237}, {62, 217}, {26, 242}, {33, 201}, {32, 200}, {27,
243}, {47, 196}, {12, 224}, {20, 248}, {15, 227}, {14, 226}, {13, 225}, {5,
232}, {23, 250}, {7, 234}, {48, 222}, {6, 233}, {59, 212}, {22, 249}, {12, 253},
{46, 220}, {16, 228}, {18, 230}, {17, 229}, {33, 215}, {41, 223}, {40, 222},
{60, 203}, {24, 224}, {28, 228}, {25, 225}, {11, 242}, {20, 238}, {38, 220},
{35, 217}, {34, 216}, {21, 239}, {39, 218}, {13, 243}, {37, 219}, {36, 218},
{68, 324}, {72, 328}, {97, 353}, {106, 362}, {113, 369}, {50, 307}, {54, 311},
{52, 309}, {99, 354}, {122, 379}, {49, 306}, {53, 310}, {40, 300}, {75, 335},
{43, 303}, {42, 302}, {41, 301}, {80, 341}, {116, 369}, {121, 380}, {123, 381},
{16, 279}, {66, 325}, {51, 308}, {96, 359}, {112, 375}, {114, 373}, {117, 370},
{120, 383}, {105, 353}, {110, 358}, {111, 359}, {17, 280}, {76, 325}, {106,
355}, {109, 356}, {113, 376}, {22, 284}, {23, 285}, {18, 281}, {68, 335}, {117,
382}, {48, 316}, {80, 348}, {75, 327}, {38, 299}, {64, 333}, {119, 378}, {20,
282}, {21, 283}, {108, 354}, {122, 372}, {65, 334}, {70, 329}, {118, 377}, {48,
288}, {52, 292}, {51, 291}, {50, 290}, {49, 289}, {99, 371}, {79, 350}, {101,
372}, {73, 347}, {103, 373}, {54, 293}, {78, 346}, {69, 336}, {100, 369}, {114,
359}, {19, 261}, {71, 337}, {53, 291}, {31, 265}, {30, 264}, {50, 293}, {67,
340}, {66, 341}, {63, 296}, {52, 291}, {108, 379}, {11, 275}, {99, 379}, {13,
276}, {74, 339}, {72, 337}, {15, 278}, {84, 333}, {90, 323}, {111, 374}, {113,
360}, {29, 263}, {61, 295}, {60, 294}, {111, 373}, {14, 277}, {155, 384}, {44,
304}, {45, 305}, {116, 360}, {27, 262}, {69, 344}, {34, 319}, {86, 331}, {92,
321}, {100, 377}, {63, 289}, {26, 261}, {117, 362}, {118, 361}, {65, 353}, {96,
320}, {123, 346}, {82, 368}, {69, 358}, {84, 375}, {119, 340}, {125, 350}, {27,
318}, {102, 323}, {45, 266}, {87, 368}, {95, 376}, {103, 320}, {24, 304}, {59,
275}, {58, 274}, {35, 266}, {38, 271}, {32, 266}, {33, 267}, {91, 369}, {29,
310}, {37, 270}, {68, 361}, {95, 370}, {34, 268}, {35, 269}, {111, 321}, {41,
281}, {85, 357}, {116, 324}, {127, 335}, {46, 287}, {47, 286}, {104, 345}, {122,
331}, {124, 333}, {44, 286}, {58, 264}, {55, 261}, {54, 260}, {51, 257}, {50,
256}, {112, 322}, {113, 323}, {116, 327}, {121, 330}, {125, 334}, {28, 296},
{81, 357}, {30, 298}, {29, 297}, {86, 354}, {103, 339}, {93, 360}, {100, 337},
{115, 326}, {52, 258}, {53, 259}, {39, 272}, {64, 375}, {114, 325}, {123, 332},
{127, 327}, {40, 273}, {77, 372}, {84, 365}, {86, 367}, {57, 259}, {37, 286},
{41, 274}, {85, 366}, {87, 364}, {80, 364}, {89, 356}, {24, 294}, {71, 377},
{57, 263}, {56, 262}, {25, 295}, {83, 365}, {101, 347}, {118, 328}, {119, 329},
{124, 322}, {77, 268}, {79, 270}, {78, 269}, {126, 317}, {127, 315}, {106, 303},
{30, 344}, {31, 345}, {104, 302}, {97, 294}, {121, 305}, {117, 316}, {28, 343},
{56, 371}, {66, 271}, {94, 273}, {81, 257}, {120, 297}, {57, 363}, {94, 268},
{126, 301}, {85, 256}, {87, 258}, {54, 352}, {86, 257}, {70, 287}, {92, 262},
{101, 319}, {88, 259}, {110, 309}, {62, 354}, {89, 260}, {93, 256}, {96, 317},
{99, 318}, {100, 313}, {102, 312}, {25, 326}, {74, 277}, {73, 278}, {88, 263},
{109, 306}, {43, 330}, {83, 306}, {94, 319}, {104, 265}, {90, 312}, {91, 313},
{92, 318}, {56, 347}, {79, 300}, {95, 316}, {55, 339}, {93, 313}, {81, 308},
{94, 315}, {77, 299}, {92, 314}, {46, 329}, {82, 309}, {95, 312}, {115, 276},
{114, 282}, {64, 297}, {109, 260}, {53, 351}, {58, 336}, {118, 284}, {124, 278},
{65, 298}, {51, 351}, {110, 258}, {119, 283}, {112, 285}, {67, 301}, {93, 307},
{126, 272}, {127, 273}, {115, 284}, {96, 272}, {47, 350}, {89, 296}, {98, 275},
{107, 282}, {120, 265}, {44, 350}, {88, 298}, {103, 277}, {121, 267}, {63, 332},
{101, 278}, {102, 277}, {125, 270}, {39, 338}, {62, 331}, {40, 349}, {122, 268},
{123, 269}, {33, 342}, {61, 330}, {45, 346}, {82, 299}, {87, 302}, {98, 283},
{32, 346}, {38, 348}, {85, 303}, {49, 332}, {36, 347}, {83, 300}, {132, 261},
{137, 266}, {137, 269}, {192, 324}, {164, 288}, {175, 298}, {136, 270}, {166,
288}, {156, 282}, {136, 271}, {192, 327}, {137, 257}, {134, 271}, {179, 314},
{187, 310}, {167, 297}, {170, 314}, {180, 292}, {131, 274}, {192, 338}, {173,
318}, {178, 289}, {165, 305}, {177, 293}, {132, 273}, {174, 315}, {146, 263},
{129, 279}, {136, 286}, {135, 287}, {164, 316}, {143, 279}, {130, 280}, {135,
285}, {134, 284}, {131, 281}, {160, 315}, {161, 317}, {190, 290}, {133, 283},
{185, 295}, {184, 294}, {169, 311}, {180, 279}, {146, 310}, {158, 314}, {145,
311}, {185, 287}, {151, 305}, {152, 304}, {176, 280}, {157, 309}, {141, 292},
{162, 267}, {155, 306}, {138, 288}, {186, 272}, {158, 308}, {143, 293}, {142,
292}, {139, 289}, {178, 281}, {147, 319}, {159, 307}, {142, 291}, {191, 274},
{169, 260}, {143, 290}, {140, 290}, {156, 307}, {183, 280}, {128, 304}, {164,
276}, {133, 308}, {153, 299}, {167, 276}, {166, 275}, {188, 265}, {154, 300},
{190, 264}, {189, 267}, {144, 295}, {152, 303}, {129, 313}, {187, 259}, {184,
256}, {151, 302}, {130, 312}, {150, 301}, {186, 262}, {138, 311}, {150, 296},
{182, 264}, {163, 285}, {189, 258}, {189, 380}, {191, 382}, {131, 320}, {188,
383}, {185, 378}, {168, 363}, {149, 342}, {163, 358}, {179, 374}, {169, 364},
{154, 339}, {186, 371}, {183, 382}, {179, 378}, {168, 353}, {148, 345}, {189,
368}, {176, 381}, {178, 381}, {133, 340}, {188, 365}, {177, 352}, {153, 328},
{141, 351}, {141, 345}, {166, 370}, {155, 334}, {129, 343}, {184, 366}, {157,
331}, {142, 344}, {160, 375}, {143, 343}, {132, 349}, {161, 376}, {156, 325},
{134, 348}, {183, 363}, {191, 355}, {136, 341}, {183, 362}, {151, 330}, {139,
342}, {142, 336}, {190, 352}, {187, 357}, {173, 371}, {171, 373}, {159, 321},
{182, 361}, {153, 377}, {175, 335}, {162, 322}, {97, 384}, {181, 340}, {135,
358}, {160, 322}, {181, 343}, {170, 328}, {164, 326}, {161, 323}, {131, 359},
{177, 341}, {163, 326}, {137, 367}, {168, 334}, {157, 379}, {147, 372}, {158,
374}, {186, 338}, {105, 384}, {159, 374}, {149, 380}, {129, 360}, {130, 363},
{133, 367}, {148, 383}, {180, 351}, {175, 324}, {171, 320}, {170, 321}, {140,
352}, {157, 368}, {177, 348}, {138, 356}, {190, 336}, {182, 344}, {134, 361},
{162, 333}, {140, 355}, {158, 367}, {159, 366}, {140, 382}, {156, 366}, {141,
383}, {144, 355}, {174, 349}, {161, 338}, {162, 342}, {145, 356}, {139, 381},
{155, 365}, {139, 380}, {138, 370}, {130, 376}, {179, 329}, {144, 362}, {151,
364}, {170, 337}, {176, 332}, {125, 384}, {192, 317}, {160, 349}, {152, 357},
{135, 378} }>;
(II) A more general form is to represent the graph as the orbit of {173, 237}
under the group generated by the following permutations:
a: (1, 2)(3, 8)(4, 11)(5, 14)(6, 7)(9, 21)(10, 18)(12, 26)(13, 28)(15, 35)(16,
25)(17, 39)(19, 42)(20, 44)(22, 50)(23, 53)(24, 55)(27, 63)(29, 67)(30, 58)(31,
70)(32, 73)(33, 62)(34, 61)(36, 78)(37, 76)(38, 80)(40, 85)(41, 88)(43, 94)(45,
101)(46, 104)(47, 107)(48, 93)(49, 92)(51, 112)(52, 110)(54, 118)(56, 123)(57,
126)(59, 98)(60, 74)(64, 133)(65, 131)(66, 136)(68, 140)(69, 142)(71, 145)(72,
89)(75, 144)(77, 151)(79, 156)(81, 160)(82, 87)(83, 159)(84, 158)(86, 162)(90,
102)(91, 166)(95, 113)(96, 168)(97, 103)(99, 139)(100, 138)(105, 171)(106,
127)(108, 149)(109, 170)(111, 155)(114, 125)(115, 143)(116, 117)(119, 120)(121,
122)(124, 137)(128, 172)(129, 164)(130, 161)(132, 152)(134, 177)(135, 141)(146,
150)(147, 165)(148, 185)(153, 169)(154, 184)(157, 189)(163, 180)(167, 181)(173,
178)(174, 187)(175, 191)(176, 186)(179, 188)(182, 190)(183, 192)(194, 197)(195,
200)(196, 203)(198, 209)(199, 211)(201, 217)(202, 208)(204, 218)(207, 226)(210,
235)(212, 239)(213, 230)(214, 242)(215, 234)(216, 233)(219, 246)(220, 251)(221,
253)(222, 256)(223, 259)(224, 261)(225, 228)(227, 269)(229, 272)(231, 275)(232,
277)(236, 283)(237, 281)(238, 286)(240, 290)(241, 291)(243, 296)(244, 295)(247,
302)(248, 304)(249, 307)(250, 310)(252, 315)(254, 319)(255, 314)(257, 322)(258,
309)(260, 328)(262, 332)(263, 301)(265, 329)(266, 278)(267, 331)(268, 330)(270,
325)(271, 341)(273, 303)(274, 298)(276, 343)(279, 326)(280, 338)(282, 350)(284,
293)(285, 351)(287, 345)(288, 313)(289, 318)(292, 358)(294, 339)(297, 340)(299,
364)(300, 366)(305, 372)(306, 321)(308, 375)(311, 377)(312, 323)(316, 360)(317,
363)(320, 353)(324, 382)(327, 362)(333, 367)(334, 359)(335, 355)(336, 344)(337,
356)(342, 354)(346, 347)(349, 357)(352, 361)(365, 374)(369, 370)(371, 381)(373,
384)(378, 383)(379, 380) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 4)(3, 7)(5, 12)(6, 16)(8, 13)(9, 19)(14, 31)(15, 34)(17, 38)(18, 30)(20,
29)(21, 46)(22, 49)(25, 28)(26, 59)(27, 62)(32, 71)(33, 75)(35, 72)(36, 77)(37,
65)(39, 82)(40, 84)(41, 69)(42, 90)(43, 93)(44, 97)(45, 100)(47, 105)(48,
109)(50, 106)(51, 111)(52, 96)(53, 114)(54, 117)(55, 120)(56, 122)(57, 66)(60,
128)(61, 129)(63, 115)(64, 132)(67, 135)(68, 139)(70, 98)(73, 147)(74, 148)(76,
88)(78, 153)(79, 155)(80, 130)(81, 159)(86, 92)(87, 161)(89, 164)(91, 165)(94,
124)(95, 169)(102, 104)(103, 141)(107, 146)(108, 173)(110, 126)(112, 174)(113,
151)(116, 121)(118, 123)(127, 162)(131, 142)(133, 179)(134, 176)(136, 168)(137,
170)(143, 144)(145, 166)(149, 175)(150, 163)(152, 184)(154, 188)(156, 187)(157,
186)(167, 172)(171, 180)(177, 183)(178, 182)(181, 185)(189, 192)(190, 191)(193,
194)(195, 198)(196, 202)(197, 206)(199, 203)(200, 214)(201, 216)(204, 220)(205,
213)(207, 224)(208, 228)(209, 231)(210, 234)(211, 225)(212, 221)(215, 244)(217,
243)(218, 247)(219, 237)(222, 255)(223, 241)(226, 265)(227, 268)(229, 271)(230,
264)(232, 253)(233, 279)(235, 276)(236, 261)(238, 263)(239, 287)(240, 289)(242,
275)(245, 299)(246, 298)(248, 297)(249, 306)(250, 285)(251, 312)(252, 307)(254,
313)(256, 303)(257, 321)(258, 317)(259, 325)(260, 316)(262, 331)(266, 337)(267,
327)(269, 328)(270, 334)(272, 309)(273, 333)(274, 336)(277, 345)(278, 319)(280,
348)(281, 344)(282, 310)(283, 329)(284, 332)(286, 353)(288, 356)(290, 355)(291,
359)(292, 320)(293, 362)(294, 304)(295, 343)(296, 326)(300, 365)(301, 358)(302,
323)(305, 369)(308, 374)(311, 370)(314, 367)(315, 322)(318, 354)(324, 380)(330,
360)(335, 342)(338, 368)(339, 383)(340, 378)(341, 363)(346, 377)(347, 372)(349,
375)(350, 384)(351, 373)(352, 382)(357, 366)(361, 381)(364, 376)(371, 379)
c: (2, 5)(3, 9)(4, 12)(6, 17)(7, 19)(8, 20)(10, 23)(11, 24)(13, 29)(14, 32)(15,
36)(16, 38)(18, 41)(21, 47)(22, 51)(25, 57)(26, 60)(27, 64)(28, 66)(30, 69)(31,
71)(33, 39)(34, 77)(35, 55)(37, 67)(40, 86)(42, 91)(43, 95)(44, 98)(45, 102)(46,
105)(48, 81)(49, 111)(50, 54)(52, 68)(53, 115)(56, 124)(59, 128)(61, 130)(62,
132)(63, 114)(65, 135)(70, 97)(72, 120)(74, 78)(75, 82)(76, 150)(79, 133)(80,
129)(83, 158)(84, 92)(85, 138)(87, 116)(88, 163)(89, 156)(90, 165)(93, 169)(94,
122)(96, 139)(99, 160)(100, 104)(103, 123)(106, 117)(107, 172)(108, 174)(109,
159)(110, 175)(112, 173)(113, 151)(118, 141)(119, 125)(121, 161)(126, 149)(127,
157)(131, 178)(134, 180)(136, 181)(137, 154)(142, 182)(143, 177)(144, 183)(145,
184)(146, 167)(148, 153)(152, 166)(155, 179)(162, 186)(164, 187)(168, 185)(170,
188)(171, 176)(189, 192)(193, 195)(194, 198)(196, 204)(197, 207)(199, 212)(201,
218)(202, 220)(203, 221)(205, 223)(206, 224)(208, 229)(209, 232)(210, 236)(211,
238)(213, 241)(215, 245)(216, 247)(217, 248)(219, 250)(222, 257)(225, 263)(226,
266)(228, 271)(230, 274)(231, 253)(233, 280)(234, 261)(235, 282)(237, 285)(239,
286)(240, 291)(242, 294)(243, 297)(244, 299)(246, 301)(249, 308)(251, 313)(252,
316)(254, 312)(255, 321)(256, 311)(258, 324)(259, 326)(260, 307)(262, 333)(264,
336)(265, 337)(267, 338)(269, 339)(270, 340)(272, 342)(273, 331)(275, 304)(276,
310)(277, 346)(278, 347)(279, 348)(283, 350)(284, 351)(287, 353)(288, 357)(289,
359)(290, 352)(292, 361)(295, 363)(296, 325)(298, 358)(300, 367)(302, 369)(303,
370)(305, 323)(306, 374)(309, 335)(314, 365)(315, 379)(317, 380)(318, 375)(319,
372)(320, 381)(322, 371)(327, 368)(328, 383)(329, 384)(330, 376)(332, 373)(334,
378)(341, 343)(345, 377)(349, 354)(355, 382)(356, 366)(360, 364)
C4[ 384, 359 ]
384
-1 198 193 194 195
-2 209 200 193 197
-3 199 210 201 196
-4 231 214 194 206
-5 232 200 195 207
-6 233 215 196 208
-7 234 202 203 216
-8 211 235 203 217
-9 212 236 204 218
-10 213 237 205 219
-11 242 275 206 197
-12 198 253 224 214
-13 199 243 276 225
-14 200 277 226 195
-15 201 278 215 227
-16 244 202 279 228
-17 245 280 204 229
-18 246 281 205 230
-19 220 221 247 261
-20 221 248 238 282
-21 204 239 283 218
-22 222 249 240 284
-23 223 250 241 285
-24 224 304 294 207
-25 225 326 295 208
-26 209 242 221 261
-27 210 243 262 318
-28 211 343 228 296
-29 297 310 212 263
-30 264 298 344 213
-31 198 265 345 214
-32 200 266 346 193
-33 342 201 267 215
-34 319 244 268 216
-35 266 234 269 217
-36 245 347 227 218
-37 286 246 270 219
-38 220 299 271 348
-39 245 272 338 218
-40 222 300 349 273
-41 223 301 281 274
-42 253 224 302 251
-43 330 254 303 252
-44 253 286 304 350
-45 254 266 346 305
-46 220 287 247 329
-47 286 201 196 350
-48 222 288 249 316
-49 255 332 289 306
-50 256 290 293 307
-51 308 257 291 351
-52 309 258 291 292
-53 310 291 259 351
-54 352 311 260 293
-55 226 248 261 339
-56 347 227 371 262
-57 363 259 229 263
-58 264 336 230 274
-59 231 275 212 236
-60 232 234 203 294
-61 330 254 233 295
-62 331 354 234 217
-63 332 289 235 296
-64 297 375 333 236
-65 298 353 334 237
-66 341 325 238 271
-67 301 239 250 340
-68 324 335 240 361
-69 344 336 358 241
-70 209 242 287 329
-71 377 214 194 337
-72 210 243 337 328
-73 278 193 347 195
-74 277 215 196 339
-75 244 335 216 327
-76 246 325 238 219
-77 299 268 247 372
-78 245 269 346 204
-79 300 270 249 350
-80 341 364 348 251
-81 308 257 357 252
-82 309 299 247 368
-83 365 300 249 306
-84 375 255 365 333
-85 256 366 357 303
-86 331 354 257 367
-87 364 258 302 368
-88 298 237 259 263
-89 235 356 260 296
-90 232 312 323 207
-91 231 313 369 206
-92 321 314 262 318
-93 256 313 360 307
-94 319 268 315 273
-95 376 312 370 316
-96 320 359 272 317
-97 232 353 294 384
-98 231 275 239 283
-99 354 379 371 318
-100 377 313 369 337
-101 319 278 347 372
-102 277 312 323 226
-103 320 277 339 373
-104 265 345 302 251
-105 353 202 216 384
-106 355 303 252 362
-107 203 238 282 217
-108 354 379 205 219
-109 255 356 260 306
-110 309 258 358 241
-111 374 321 359 373
-112 375 322 241 285
-113 376 323 369 360
-114 325 282 359 373
-115 276 326 240 284
-116 324 369 327 360
-117 370 316 382 362
-118 377 284 328 361
-119 378 283 329 340
-120 297 265 236 383
-121 330 267 380 305
-122 331 268 379 372
-123 332 269 346 381
-124 278 322 333 227
-125 334 270 350 384
-126 223 301 272 317
-127 335 315 327 273
-128 253 199 210 304
-129 343 279 313 360
-130 363 376 312 280
-131 320 281 359 274
-132 248 261 349 273
-133 308 367 283 340
-134 271 348 284 361
-135 287 378 358 285
-136 286 341 270 271
-137 266 257 367 269
-138 288 311 356 370
-139 342 289 380 381
-140 352 355 290 382
-141 345 292 383 351
-142 344 291 292 336
-143 343 279 290 293
-144 233 355 295 362
-145 242 311 356 197
-146 199 243 310 263
-147 198 319 194 372
-148 244 202 345 383
-149 342 246 380 205
-150 211 301 250 296
-151 330 364 302 305
-152 224 357 303 304
-153 220 299 377 328
-154 222 300 226 339
-155 365 334 306 384
-156 366 325 282 307
-157 309 331 368 379
-158 308 374 367 314
-159 374 321 366 307
-160 375 322 315 349
-161 376 323 338 317
-162 342 267 322 333
-163 225 358 326 285
-164 276 288 326 316
-165 209 254 305 197
-166 275 288 370 206
-167 297 276 212 225
-168 363 353 334 229
-169 364 311 260 251
-170 321 314 337 328
-171 320 233 208 373
-172 221 211 235 248
-173 213 237 371 318
-174 223 315 250 349
-175 298 213 324 335
-176 332 280 381 229
-177 341 352 293 348
-178 289 281 381 230
-179 374 378 314 329
-180 279 292 228 351
-181 343 228 239 340
-182 264 344 240 361
-183 363 280 382 362
-184 256 366 294 207
-185 287 378 295 208
-186 272 338 371 262
-187 310 357 259 252
-188 265 255 365 383
-189 267 258 368 380
-190 264 352 290 336
-191 355 382 230 274
-192 324 327 338 317
-193 1 2 73 32
-194 1 4 147 71
-195 1 14 5 73
-196 3 47 6 74
-197 11 165 2 145
-198 1 12 147 31
-199 13 3 146 128
-200 2 14 5 32
-201 33 3 47 15
-202 16 148 105 7
-203 60 7 8 107
-204 78 17 9 21
-205 149 18 108 10
-206 11 166 91 4
-207 24 90 5 184
-208 25 6 171 185
-209 165 2 26 70
-210 3 27 72 128
-211 28 150 172 8
-212 167 59 29 9
-213 30 173 10 175
-214 12 4 71 31
-215 33 15 6 74
-216 34 105 7 75
-217 35 62 8 107
-218 36 39 9 21
-219 37 108 10 76
-220 46 38 19 153
-221 26 172 19 20
-222 22 154 48 40
-223 23 126 41 174
-224 12 24 42 152
-225 13 167 25 163
-226 55 154 14 102
-227 56 36 124 15
-228 180 16 181 28
-229 176 57 168 17
-230 178 58 191 18
-231 91 4 59 98
-232 90 5 60 97
-233 144 6 61 171
-234 35 60 7 62
-235 89 172 8 63
-236 59 9 64 120
-237 88 173 10 65
-238 66 107 20 76
-239 67 181 21 98
-240 22 68 115 182
-241 110 23 112 69
-242 11 145 26 70
-243 13 146 27 72
-244 34 16 148 75
-245 78 36 17 39
-246 37 149 18 76
-247 77 46 82 19
-248 55 132 172 20
-249 22 79 48 83
-250 23 67 150 174
-251 80 169 104 42
-252 187 81 106 43
-253 44 12 128 42
-254 165 45 61 43
-255 188 49 84 109
-256 93 50 85 184
-257 81 137 51 86
-258 110 189 52 87
-259 88 187 57 53
-260 89 169 54 109
-261 55 132 26 19
-262 56 92 27 186
-263 88 57 146 29
-264 58 190 182 30
-265 188 104 31 120
-266 45 35 137 32
-267 33 121 189 162
-268 77 34 122 94
-269 78 35 123 137
-270 79 37 125 136
-271 66 134 136 38
-272 126 39 96 186
-273 132 94 127 40
-274 58 191 41 131
-275 11 166 59 98
-276 13 167 115 164
-277 14 102 103 74
-278 101 124 15 73
-279 143 180 16 129
-280 176 17 183 130
-281 178 18 41 131
-282 156 114 107 20
-283 133 119 21 98
-284 22 134 115 118
-285 23 112 135 163
-286 44 47 37 136
-287 46 135 70 185
-288 166 48 138 164
-289 178 49 139 63
-290 143 190 50 140
-291 51 52 53 142
-292 180 52 141 142
-293 143 177 50 54
-294 24 60 184 97
-295 144 25 61 185
-296 89 28 150 63
-297 167 29 64 120
-298 88 30 65 175
-299 77 38 82 153
-300 154 79 83 40
-301 67 126 150 41
-302 104 151 42 87
-303 106 85 152 43
-304 44 24 128 152
-305 121 165 45 151
-306 155 49 83 109
-307 156 93 159 50
-308 133 81 158 51
-309 110 157 82 52
-310 187 146 29 53
-311 145 169 138 54
-312 90 102 95 130
-313 100 91 93 129
-314 179 92 158 170
-315 94 127 160 174
-316 48 95 117 164
-317 126 192 161 96
-318 99 92 27 173
-319 34 101 147 94
-320 103 171 96 131
-321 111 92 159 170
-322 112 124 160 162
-323 90 102 113 161
-324 68 192 116 175
-325 66 156 114 76
-326 25 115 163 164
-327 192 116 127 75
-328 170 72 118 153
-329 46 179 70 119
-330 121 61 151 43
-331 122 157 62 86
-332 176 123 49 63
-333 124 84 162 64
-334 155 168 125 65
-335 68 127 75 175
-336 58 69 190 142
-337 100 71 170 72
-338 192 39 161 186
-339 55 154 103 74
-340 67 133 181 119
-341 66 177 80 136
-342 33 149 139 162
-343 143 181 28 129
-344 69 182 30 142
-345 104 148 31 141
-346 45 78 123 32
-347 56 101 36 73
-348 177 134 80 38
-349 132 160 40 174
-350 44 79 47 125
-351 180 51 53 141
-352 177 190 140 54
-353 168 105 97 65
-354 99 62 86 108
-355 144 191 106 140
-356 89 145 138 109
-357 187 81 85 152
-358 110 69 135 163
-359 111 114 96 131
-360 113 93 116 129
-361 68 134 182 118
-362 144 106 117 183
-363 57 168 183 130
-364 80 169 151 87
-365 155 188 83 84
-366 156 159 85 184
-367 133 158 137 86
-368 189 157 82 87
-369 100 91 113 116
-370 166 138 95 117
-371 99 56 173 186
-372 77 122 101 147
-373 111 103 114 171
-374 111 179 158 159
-375 112 160 84 64
-376 113 95 161 130
-377 100 71 118 153
-378 135 179 119 185
-379 99 122 157 108
-380 121 189 149 139
-381 176 123 178 139
-382 191 117 183 140
-383 188 148 141 120
-384 155 125 105 97
0