C4graphGraph forms for C4 [ 384, 377 ] = SDD(KE_24(1,11,2,15,1))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 377 ] = SDD(KE_24(1,11,2,15,1)).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {182, 246}, {129, 194}, {145, 212}, {164, 225}, {129, 199}, {129, 202}, {129, 207}, {144, 193}, {164, 247}, {144, 196}, {144, 198}, {144, 201}, {163, 195}, {163, 194}, {163, 193}, {163, 197}, {145, 246}, {128, 244}, {72, 200}, {92, 220}, {96, 224}, {85, 214}, {87, 211}, {125, 248}, {92, 212}, {105, 224}, {127, 245}, {85, 222}, {65, 205}, {86, 218}, {87, 219}, {88, 213}, {96, 237}, {87, 198}, {72, 221}, {119, 226}, {68, 210}, {120, 238}, {127, 232}, {73, 208}, {87, 206}, {120, 225}, {92, 199}, {100, 255}, {85, 201}, {72, 213}, {117, 235}, {91, 251}, {101, 196}, {72, 234}, {65, 226}, {68, 231}, {64, 228}, {116, 210}, {118, 208}, {74, 237}, {101, 204}, {86, 252}, {96, 203}, {73, 229}, {127, 211}, {65, 239}, {116, 218}, {88, 247}, {68, 244}, {116, 197}, {71, 243}, {101, 209}, {120, 204}, {92, 233}, {118, 195}, {76, 250}, {69, 242}, {96, 216}, {116, 205}, {73, 242}, {78, 245}, {100, 223}, {101, 217}, {118, 203}, {85, 235}, {118, 200}, {1, 193}, {56, 248}, {48, 240}, {3, 194}, {62, 255}, {58, 251}, {55, 246}, {53, 244}, {51, 242}, {49, 240}, {47, 238}, {45, 236}, {43, 234}, {41, 232}, {39, 230}, {37, 228}, {35, 226}, {33, 224}, {31, 222}, {29, 220}, {27, 218}, {25, 216}, {23, 214}, {21, 212}, {19, 210}, {17, 208}, {15, 206}, {13, 204}, {11, 202}, {9, 200}, {7, 198}, {5, 196}, {1, 195}, {1, 194}, {57, 250}, {54, 245}, {50, 241}, {46, 237}, {42, 233}, {38, 229}, {34, 225}, {30, 221}, {26, 217}, {22, 213}, {18, 209}, {14, 205}, {10, 201}, {6, 197}, {2, 193}, {1, 197}, {3, 199}, {2, 198}, {24, 221}, {29, 216}, {25, 220}, {2, 196}, {4, 195}, {59, 252}, {52, 243}, {47, 232}, {44, 235}, {41, 238}, {36, 227}, {28, 219}, {20, 211}, {12, 203}, {3, 202}, {30, 215}, {7, 206}, {5, 204}, {2, 201}, {6, 205}, {3, 207}, {49, 253}, {4, 200}, {60, 241}, {40, 230}, {4, 203}, {49, 254}, {40, 231}, {24, 215}, {8, 199}, {41, 249}, {61, 236}, {59, 233}, {43, 248}, {48, 227}, {4, 208}, {12, 216}, {11, 223}, {10, 222}, {9, 221}, {8, 220}, {7, 211}, {6, 210}, {5, 209}, {34, 247}, {42, 252}, {47, 249}, {39, 240}, {49, 230}, {60, 228}, {39, 254}, {39, 253}, {36, 255}, {40, 243}, {5, 217}, {11, 215}, {10, 214}, {9, 213}, {8, 212}, {7, 219}, {6, 218}, {38, 251}, {62, 227}, {16, 207}, {48, 239}, {32, 255}, {15, 239}, {30, 254}, {29, 253}, {8, 233}, {26, 251}, {24, 249}, {22, 247}, {20, 245}, {18, 243}, {16, 241}, {14, 239}, {12, 237}, {10, 235}, {61, 223}, {9, 234}, {25, 250}, {21, 246}, {17, 242}, {13, 238}, {25, 253}, {24, 254}, {11, 236}, {30, 249}, {29, 250}, {27, 252}, {19, 244}, {50, 219}, {61, 215}, {12, 224}, {15, 227}, {14, 226}, {13, 225}, {28, 241}, {23, 248}, {31, 236}, {60, 207}, {45, 222}, {16, 228}, {19, 231}, {18, 230}, {17, 229}, {18, 231}, {61, 202}, {40, 209}, {20, 232}, {23, 234}, {43, 214}, {48, 206}, {15, 240}, {38, 217}, {32, 223}, {26, 229}, {51, 306}, {82, 339}, {21, 279}, {63, 317}, {27, 281}, {23, 276}, {79, 332}, {83, 336}, {31, 283}, {109, 361}, {67, 326}, {70, 323}, {93, 344}, {28, 282}, {58, 316}, {53, 307}, {34, 292}, {57, 318}, {66, 325}, {80, 343}, {94, 345}, {89, 337}, {90, 338}, {81, 344}, {26, 273}, {111, 356}, {13, 257}, {56, 308}, {36, 296}, {35, 303}, {14, 258}, {42, 295}, {22, 280}, {46, 288}, {37, 299}, {108, 354}, {55, 312}, {20, 262}, {51, 289}, {27, 265}, {21, 263}, {16, 259}, {31, 267}, {55, 291}, {54, 290}, {17, 260}, {63, 298}, {93, 328}, {112, 357}, {124, 361}, {19, 261}, {126, 360}, {62, 296}, {28, 266}, {95, 329}, {53, 290}, {80, 327}, {94, 329}, {81, 328}, {90, 320}, {121, 355}, {44, 304}, {59, 295}, {58, 294}, {52, 297}, {56, 293}, {95, 322}, {22, 264}, {122, 356}, {46, 305}, {94, 321}, {106, 330}, {107, 331}, {33, 256}, {104, 329}, {108, 333}, {115, 338}, {36, 263}, {53, 278}, {109, 334}, {114, 337}, {102, 323}, {45, 267}, {124, 346}, {37, 258}, {57, 286}, {46, 265}, {50, 282}, {59, 275}, {111, 327}, {63, 277}, {104, 322}, {110, 325}, {123, 336}, {126, 341}, {32, 268}, {35, 271}, {34, 270}, {33, 269}, {108, 320}, {111, 322}, {121, 340}, {58, 276}, {113, 351}, {57, 278}, {176, 384}, {124, 334}, {44, 287}, {112, 323}, {115, 320}, {52, 256}, {98, 342}, {103, 339}, {37, 272}, {45, 283}, {51, 261}, {106, 348}, {107, 349}, {38, 273}, {109, 346}, {50, 266}, {55, 271}, {112, 328}, {121, 321}, {122, 322}, {126, 326}, {42, 275}, {62, 263}, {44, 277}, {125, 324}, {54, 268}, {186, 384}, {41, 274}, {54, 269}, {32, 284}, {52, 264}, {33, 285}, {35, 286}, {189, 384}, {47, 274}, {122, 327}, {63, 257}, {113, 335}, {43, 276}, {191, 384}, {60, 259}, {69, 261}, {70, 262}, {80, 272}, {81, 273}, {82, 274}, {83, 275}, {88, 280}, {123, 315}, {66, 259}, {75, 266}, {68, 261}, {79, 270}, {84, 277}, {97, 288}, {64, 258}, {78, 268}, {90, 280}, {110, 300}, {65, 258}, {74, 265}, {78, 269}, {95, 282}, {117, 304}, {77, 267}, {67, 260}, {71, 256}, {94, 281}, {102, 289}, {111, 296}, {103, 302}, {106, 291}, {125, 308}, {108, 294}, {109, 295}, {93, 273}, {73, 260}, {99, 302}, {113, 316}, {114, 319}, {89, 279}, {126, 304}, {71, 264}, {86, 281}, {91, 276}, {107, 292}, {64, 272}, {77, 285}, {75, 283}, {88, 264}, {123, 299}, {107, 314}, {76, 286}, {122, 296}, {97, 306}, {98, 305}, {103, 308}, {106, 313}, {84, 257}, {99, 310}, {121, 303}, {98, 309}, {119, 303}, {125, 293}, {70, 287}, {112, 297}, {76, 278}, {104, 307}, {110, 309}, {113, 298}, {124, 295}, {114, 300}, {115, 301}, {86, 265}, {102, 262}, {117, 277}, {77, 302}, {69, 289}, {105, 269}, {114, 279}, {82, 308}, {89, 319}, {70, 289}, {91, 316}, {93, 314}, {83, 315}, {99, 267}, {100, 268}, {123, 275}, {80, 313}, {84, 317}, {105, 256}, {119, 286}, {74, 288}, {79, 293}, {117, 287}, {64, 299}, {75, 288}, {81, 314}, {97, 266}, {115, 280}, {78, 290}, {95, 307}, {110, 259}, {66, 300}, {71, 297}, {67, 301}, {76, 318}, {104, 282}, {105, 285}, {67, 310}, {89, 300}, {103, 274}, {66, 309}, {69, 306}, {90, 301}, {79, 311}, {83, 299}, {100, 284}, {119, 271}, {75, 306}, {127, 262}, {102, 287}, {120, 257}, {97, 283}, {74, 305}, {77, 310}, {56, 324}, {82, 302}, {91, 294}, {84, 298}, {98, 284}, {99, 285}, {132, 260}, {164, 292}, {161, 293}, {149, 272}, {145, 279}, {188, 311}, {181, 313}, {182, 312}, {138, 281}, {182, 291}, {128, 278}, {181, 291}, {161, 311}, {145, 263}, {160, 312}, {130, 284}, {143, 303}, {128, 290}, {136, 298}, {155, 319}, {159, 315}, {151, 304}, {132, 301}, {148, 317}, {131, 297}, {164, 270}, {142, 292}, {141, 294}, {149, 313}, {147, 318}, {161, 270}, {132, 310}, {133, 311}, {128, 307}, {140, 319}, {130, 305}, {136, 316}, {142, 314}, {137, 317}, {139, 318}, {192, 373}, {130, 309}, {182, 271}, {192, 378}, {135, 315}, {192, 380}, {134, 312}, {192, 383}, {131, 323}, {189, 381}, {187, 379}, {184, 376}, {177, 369}, {175, 367}, {141, 333}, {159, 350}, {190, 383}, {175, 366}, {132, 326}, {191, 381}, {190, 380}, {186, 376}, {185, 379}, {174, 364}, {172, 366}, {170, 360}, {167, 357}, {165, 359}, {151, 341}, {149, 343}, {138, 329}, {178, 369}, {172, 367}, {152, 347}, {162, 358}, {190, 378}, {189, 377}, {187, 383}, {186, 382}, {178, 374}, {142, 331}, {183, 370}, {168, 365}, {147, 342}, {154, 348}, {191, 377}, {185, 383}, {180, 370}, {173, 363}, {136, 335}, {177, 374}, {169, 366}, {152, 351}, {146, 341}, {133, 333}, {176, 376}, {134, 334}, {147, 346}, {131, 328}, {190, 373}, {184, 371}, {160, 363}, {159, 340}, {155, 336}, {138, 321}, {171, 359}, {178, 382}, {141, 320}, {189, 368}, {185, 372}, {167, 362}, {158, 339}, {156, 337}, {143, 321}, {183, 377}, {176, 382}, {166, 360}, {133, 330}, {191, 368}, {187, 372}, {177, 382}, {173, 354}, {157, 338}, {150, 345}, {167, 375}, {185, 361}, {183, 359}, {170, 378}, {139, 346}, {151, 326}, {149, 327}, {187, 361}, {162, 368}, {135, 340}, {184, 363}, {176, 355}, {152, 331}, {150, 325}, {142, 349}, {138, 345}, {130, 342}, {180, 352}, {175, 379}, {169, 381}, {168, 380}, {153, 332}, {180, 353}, {179, 358}, {177, 356}, {173, 376}, {166, 371}, {154, 335}, {146, 324}, {178, 356}, {136, 351}, {172, 379}, {165, 370}, {135, 350}, {186, 355}, {170, 371}, {184, 354}, {133, 350}, {143, 340}, {140, 336}, {166, 378}, {165, 377}, {134, 347}, {139, 342}, {168, 374}, {179, 365}, {173, 371}, {169, 375}, {171, 372}, {140, 364}, {183, 343}, {157, 381}, {156, 380}, {148, 373}, {146, 368}, {188, 350}, {150, 372}, {147, 369}, {137, 362}, {174, 331}, {131, 357}, {162, 324}, {135, 367}, {137, 352}, {181, 348}, {158, 375}, {156, 374}, {157, 375}, {153, 370}, {143, 355}, {134, 363}, {161, 332}, {140, 353}, {160, 334}, {171, 325}, {141, 354}, {179, 348}, {159, 367}, {150, 359}, {188, 333}, {174, 351}, {172, 349}, {156, 365}, {165, 343}, {175, 349}, {171, 345}, {170, 344}, {157, 366}, {146, 358}, {167, 339}, {158, 362}, {152, 364}, {148, 352}, {174, 347}, {188, 330}, {154, 365}, {162, 341}, {155, 364}, {153, 353}, {180, 332}, {153, 352}, {168, 337}, {139, 369}, {155, 353}, {158, 357}, {169, 338}, {160, 347}, {137, 373}, {179, 335}, {154, 358}, {148, 362}, {166, 344}, {151, 360}, {181, 330} }>;

(II) A more general form is to represent the graph as the orbit of {182, 246} under the group generated by the following permutations:

a: (15, 48)
b: (139, 147)
c: (90, 115)
d: (154, 179)
e: (33, 105)
f: (176, 186)
g: (39, 49)
h: (152, 174)
m: (25, 29)
n1: (189, 191)
a1: (44, 117)
b1: (52, 71)
c1: (5, 101)
d1: (28, 50)
e1: (11, 61)
f1: (79, 161)
g1: (121, 143)
h1: (67, 132)
m1: (81, 93)
n2: (66, 110)
a2: (82, 103)
b2: (133, 188)
c2: (126, 151)
d2: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 27)(18, 25)(20, 32)(22, 35)(23, 37)(26, 42)(28, 31)(29, 40)(30, 48)(33, 53)(34, 55)(36, 41)(38, 59)(43, 64)(44, 66)(45, 50)(46, 51)(47, 62)(52, 57)(56, 80)(58, 83)(60, 85)(61, 87)(63, 89)(65, 72)(67, 94)(68, 96)(69, 74)(70, 98)(71, 76)(73, 86)(77, 95)(79, 106)(81, 109)(82, 111)(84, 114)(88, 119)(90, 121)(91, 123)(92, 101)(93, 124)(99, 104)(100, 127)(102, 130)(103, 122)(105, 128)(107, 134)(108, 135)(110, 117)(112, 139)(113, 140)(115, 143)(116, 118)(120, 145)(125, 149)(126, 150)(129, 144)(131, 147)(132, 138)(136, 155)(137, 156)(141, 159)(142, 160)(146, 165)(148, 168)(151, 171)(153, 154)(157, 176)(158, 177)(161, 181)(162, 183)(164, 182)(166, 185)(167, 178)(169, 186)(170, 187)(172, 173)(175, 184)(179, 180)(193, 194)(195, 197)(196, 199)(198, 202)(200, 205)(201, 207)(203, 210)(204, 212)(206, 215)(208, 218)(209, 220)(211, 223)(213, 226)(214, 228)(216, 231)(217, 233)(219, 236)(221, 239)(222, 241)(224, 244)(225, 246)(227, 249)(229, 252)(230, 253)(232, 255)(234, 258)(235, 259)(237, 261)(238, 263)(240, 254)(242, 265)(243, 250)(245, 268)(247, 271)(248, 272)(251, 275)(256, 278)(257, 279)(260, 281)(262, 284)(264, 286)(266, 283)(267, 282)(269, 290)(270, 291)(273, 295)(274, 296)(276, 299)(277, 300)(280, 303)(285, 307)(287, 309)(288, 306)(289, 305)(292, 312)(293, 313)(294, 315)(297, 318)(298, 319)(301, 321)(302, 322)(304, 325)(308, 327)(310, 329)(311, 330)(314, 334)(316, 336)(317, 337)(320, 340)(323, 342)(324, 343)(326, 345)(328, 346)(331, 347)(332, 348)(333, 350)(335, 353)(338, 355)(339, 356)(341, 359)(344, 361)(349, 363)(351, 364)(352, 365)(354, 367)(357, 369)(358, 370)(360, 372)(362, 374)(366, 376)(368, 377)(371, 379)(373, 380)(375, 382)(378, 383)(381, 384)
e2: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 22)(15, 25)(16, 27)(18, 24)(20, 33)(21, 35)(23, 26)(28, 46)(29, 48)(30, 40)(31, 51)(32, 53)(36, 57)(37, 42)(38, 43)(41, 52)(44, 67)(45, 69)(47, 71)(50, 74)(56, 81)(59, 64)(60, 86)(61, 68)(62, 76)(63, 90)(65, 92)(66, 94)(70, 77)(72, 101)(73, 85)(79, 107)(80, 109)(82, 112)(84, 115)(87, 96)(88, 120)(89, 121)(93, 125)(95, 98)(99, 102)(100, 128)(103, 131)(104, 130)(105, 127)(106, 134)(108, 113)(110, 138)(111, 139)(114, 143)(116, 129)(117, 132)(118, 144)(119, 145)(122, 147)(124, 149)(133, 152)(135, 140)(136, 141)(137, 157)(142, 161)(146, 166)(148, 169)(153, 172)(154, 173)(155, 159)(156, 176)(160, 181)(162, 170)(165, 185)(168, 186)(174, 188)(175, 180)(179, 184)(183, 187)(189, 190)(191, 192)(193, 195)(194, 197)(196, 200)(198, 203)(199, 205)(201, 208)(202, 210)(204, 213)(206, 216)(207, 218)(209, 221)(211, 224)(212, 226)(214, 229)(215, 231)(217, 234)(219, 237)(220, 239)(222, 242)(223, 244)(225, 247)(227, 250)(228, 252)(230, 254)(232, 256)(233, 258)(235, 260)(236, 261)(238, 264)(240, 253)(241, 265)(243, 249)(245, 269)(246, 271)(248, 273)(251, 276)(255, 278)(257, 280)(259, 281)(262, 285)(263, 286)(266, 288)(267, 289)(268, 290)(270, 292)(272, 295)(274, 297)(275, 299)(277, 301)(279, 303)(282, 305)(283, 306)(284, 307)(287, 310)(291, 312)(293, 314)(294, 316)(296, 318)(298, 320)(300, 321)(302, 323)(304, 326)(308, 328)(309, 329)(311, 331)(313, 334)(315, 336)(317, 338)(319, 340)(322, 342)(324, 344)(325, 345)(327, 346)(330, 347)(332, 349)(333, 351)(335, 354)(337, 355)(339, 357)(341, 360)(343, 361)(348, 363)(350, 364)(352, 366)(353, 367)(356, 369)(358, 371)(359, 372)(362, 375)(365, 376)(368, 378)(370, 379)(373, 381)(374, 382)(377, 383)(380, 384)
f2: (58, 91)
g2: (77, 99)
h2: (146, 162)
m2: (177, 178)
n3: (41, 47)
a3: (12, 96)
b3: (150, 171)
c3: (10, 85)
d3: (21, 145)
e3: (165, 183)
f3: (9, 72)
g3: (70, 102)
h3: (13, 120)
m3: (7, 87)
n4: (6, 116)
a4: (31, 45)
b4: (17, 73)
c4: (42, 59)
d4: (185, 187)
e4: (14, 65)
f4: (156, 168)
g4: (109, 124)
h4: (23, 43)
m4: (37, 64)
n5: (24, 30)
a5: (112, 131)
b5: (94, 138)
c5: (140, 155)
d5: (95, 104)
e5: (107, 142)
f5: (166, 170)
g5: (51, 69)
h5: (46, 74)
m5: (172, 175)
n6: (57, 76)
a6: (19, 68)
b6: (135, 159)
c6: (113, 136)
d6: (173, 184)
e6: (16, 60)
f6: (111, 122)
g6: (89, 114)
h6: (54, 78)
m6: (137, 148)
n7: (8, 92)
a7: (190, 192)
b7: (26, 38)
c7: (106, 181)
d7: (35, 119)
e7: (27, 86)
f7: (153, 180)
g7: (98, 130)
h7: (3, 129)
m7: (34, 164)
n8: (80, 149)
a8: (20, 127)
b8: (63, 84)
c8: (32, 100)
d8: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 23)(16, 26)(17, 28)(19, 31)(21, 34)(22, 36)(24, 39)(25, 41)(27, 44)(29, 47)(30, 49)(32, 52)(33, 54)(35, 56)(37, 58)(38, 60)(40, 61)(42, 63)(43, 65)(45, 68)(46, 70)(48, 72)(50, 73)(51, 75)(53, 77)(55, 79)(57, 82)(59, 84)(62, 88)(64, 91)(66, 81)(67, 95)(69, 97)(71, 100)(74, 102)(76, 103)(78, 105)(80, 108)(83, 113)(85, 116)(86, 117)(87, 118)(89, 107)(90, 111)(92, 120)(93, 110)(94, 126)(96, 127)(98, 112)(99, 128)(101, 129)(104, 132)(106, 133)(109, 137)(114, 142)(115, 122)(119, 125)(121, 146)(123, 136)(124, 148)(130, 131)(134, 153)(135, 154)(138, 151)(139, 158)(140, 152)(141, 149)(143, 162)(144, 163)(145, 164)(147, 167)(150, 166)(155, 174)(156, 172)(157, 177)(159, 179)(160, 180)(161, 182)(165, 173)(168, 175)(169, 178)(170, 171)(176, 189)(181, 188)(183, 184)(185, 190)(186, 191)(187, 192)(194, 196)(195, 198)(197, 201)(199, 204)(200, 206)(202, 209)(203, 211)(205, 214)(207, 217)(208, 219)(210, 222)(212, 225)(213, 227)(215, 230)(216, 232)(218, 235)(220, 238)(221, 240)(223, 243)(224, 245)(226, 248)(228, 251)(229, 241)(231, 236)(233, 257)(234, 239)(237, 262)(242, 266)(244, 267)(246, 270)(247, 263)(249, 253)(250, 274)(252, 277)(255, 264)(256, 268)(258, 276)(259, 273)(260, 282)(261, 283)(265, 287)(271, 293)(272, 294)(275, 298)(278, 302)(279, 292)(280, 296)(281, 304)(284, 297)(285, 290)(286, 308)(288, 289)(291, 311)(295, 317)(299, 316)(300, 314)(301, 322)(303, 324)(305, 323)(307, 310)(309, 328)(312, 332)(313, 333)(315, 335)(318, 339)(319, 331)(320, 327)(321, 341)(325, 344)(326, 329)(334, 352)(336, 351)(337, 349)(338, 356)(340, 358)(342, 357)(343, 354)(345, 360)(346, 362)(347, 353)(348, 350)(355, 368)(359, 371)(361, 373)(363, 370)(365, 367)(366, 374)(369, 375)(372, 378)(376, 377)(379, 380)(381, 382)
e8: (83, 123)
f8: (134, 160)
g8: (18, 40)
h8: (75, 97)
m8: (157, 169)
n9: (108, 141)
a9: (22, 88)
b9: (158, 167)
c9: (2, 144)
d9: (55, 182)
e9: (4, 118)
f9: (36, 62)
g9: (53, 128)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 377 ]
384
-1 193 194 195 197
-2 198 201 193 196
-3 199 202 194 207
-4 200 203 195 208
-5 209 204 217 196
-6 210 205 218 197
-7 198 211 206 219
-8 220 199 233 212
-9 221 200 234 213
-10 222 201 235 214
-11 223 202 236 215
-12 224 203 237 216
-13 257 225 204 238
-14 258 226 205 239
-15 227 206 239 240
-16 259 228 207 241
-17 242 260 229 208
-18 209 231 243 230
-19 231 210 244 261
-20 232 211 245 262
-21 212 246 279 263
-22 264 213 247 280
-23 276 234 214 248
-24 221 254 215 249
-25 220 253 216 250
-26 217 229 251 273
-27 265 281 218 252
-28 266 282 219 241
-29 220 253 216 250
-30 221 254 215 249
-31 222 267 236 283
-32 255 223 268 284
-33 256 224 269 285
-34 225 247 270 292
-35 286 226 303 271
-36 255 227 263 296
-37 299 258 228 272
-38 217 229 251 273
-39 253 254 240 230
-40 209 231 243 230
-41 232 238 249 274
-42 275 233 295 252
-43 276 234 214 248
-44 287 277 235 304
-45 222 267 236 283
-46 265 288 237 305
-47 232 238 249 274
-48 227 206 239 240
-49 253 254 240 230
-50 266 282 219 241
-51 242 289 261 306
-52 264 297 243 256
-53 244 278 290 307
-54 245 268 290 269
-55 246 312 291 271
-56 308 324 248 293
-57 286 278 250 318
-58 276 294 316 251
-59 275 233 295 252
-60 259 228 207 241
-61 223 202 236 215
-62 255 227 263 296
-63 298 277 257 317
-64 299 258 228 272
-65 258 226 205 239
-66 309 300 259 325
-67 310 301 260 326
-68 231 210 244 261
-69 242 289 261 306
-70 287 289 323 262
-71 264 297 243 256
-72 221 200 234 213
-73 242 260 229 208
-74 265 288 237 305
-75 266 288 283 306
-76 286 278 250 318
-77 310 267 302 285
-78 245 268 290 269
-79 332 311 270 293
-80 343 313 272 327
-81 344 314 273 328
-82 308 302 339 274
-83 275 299 336 315
-84 298 277 257 317
-85 222 201 235 214
-86 265 281 218 252
-87 198 211 206 219
-88 264 213 247 280
-89 319 300 279 337
-90 320 301 280 338
-91 276 294 316 251
-92 220 199 233 212
-93 344 314 273 328
-94 321 345 281 329
-95 322 282 307 329
-96 224 203 237 216
-97 266 288 283 306
-98 309 342 305 284
-99 310 267 302 285
-100 255 223 268 284
-101 209 204 217 196
-102 287 289 323 262
-103 308 302 339 274
-104 322 282 307 329
-105 256 224 269 285
-106 330 291 313 348
-107 331 292 314 349
-108 320 354 333 294
-109 334 346 295 361
-110 309 300 259 325
-111 322 356 327 296
-112 297 323 357 328
-113 298 335 316 351
-114 319 300 279 337
-115 320 301 280 338
-116 210 205 218 197
-117 287 277 235 304
-118 200 203 195 208
-119 286 226 303 271
-120 257 225 204 238
-121 321 355 303 340
-122 322 356 327 296
-123 275 299 336 315
-124 334 346 295 361
-125 308 324 248 293
-126 341 304 326 360
-127 232 211 245 262
-128 244 278 290 307
-129 199 202 194 207
-130 309 342 305 284
-131 297 323 357 328
-132 310 301 260 326
-133 330 311 333 350
-134 363 312 334 347
-135 367 315 350 340
-136 298 335 316 351
-137 352 317 362 373
-138 321 345 281 329
-139 342 346 369 318
-140 319 353 364 336
-141 320 354 333 294
-142 331 292 314 349
-143 321 355 303 340
-144 198 201 193 196
-145 212 246 279 263
-146 341 324 368 358
-147 342 346 369 318
-148 352 317 362 373
-149 343 313 272 327
-150 345 325 359 372
-151 341 304 326 360
-152 331 364 347 351
-153 352 353 332 370
-154 365 335 358 348
-155 319 353 364 336
-156 374 365 380 337
-157 375 366 381 338
-158 375 357 339 362
-159 367 315 350 340
-160 363 312 334 347
-161 332 311 270 293
-162 341 324 368 358
-163 193 194 195 197
-164 225 247 270 292
-165 343 377 359 370
-166 344 378 360 371
-167 375 357 339 362
-168 374 365 380 337
-169 375 366 381 338
-170 344 378 360 371
-171 345 325 359 372
-172 366 367 379 349
-173 363 354 376 371
-174 331 364 347 351
-175 366 367 379 349
-176 376 355 382 384
-177 374 356 369 382
-178 374 356 369 382
-179 365 335 358 348
-180 352 353 332 370
-181 330 291 313 348
-182 246 312 291 271
-183 343 377 359 370
-184 363 354 376 371
-185 379 361 372 383
-186 376 355 382 384
-187 379 361 372 383
-188 330 311 333 350
-189 377 368 381 384
-190 378 380 383 373
-191 377 368 381 384
-192 378 380 383 373
-193 1 144 2 163
-194 1 3 129 163
-195 1 4 118 163
-196 144 2 101 5
-197 1 6 116 163
-198 144 2 7 87
-199 3 92 8 129
-200 4 72 118 9
-201 144 2 85 10
-202 11 3 61 129
-203 12 4 96 118
-204 13 101 5 120
-205 14 6 116 65
-206 15 48 7 87
-207 3 16 60 129
-208 4 17 73 118
-209 101 5 18 40
-210 68 6 116 19
-211 127 7 20 87
-212 145 92 8 21
-213 22 88 72 9
-214 23 85 10 43
-215 11 24 61 30
-216 12 25 29 96
-217 101 26 5 38
-218 27 6 116 86
-219 28 50 7 87
-220 25 92 29 8
-221 24 72 30 9
-222 45 85 31 10
-223 11 100 61 32
-224 33 12 105 96
-225 34 13 120 164
-226 35 14 119 65
-227 36 15 48 62
-228 37 16 60 64
-229 26 38 17 73
-230 49 39 18 40
-231 68 18 40 19
-232 47 127 41 20
-233 59 92 8 42
-234 23 72 9 43
-235 44 117 85 10
-236 11 45 61 31
-237 12 46 74 96
-238 13 47 41 120
-239 14 15 48 65
-240 15 48 49 39
-241 16 60 28 50
-242 69 17 51 73
-243 71 18 40 52
-244 68 128 19 53
-245 78 127 20 54
-246 55 145 182 21
-247 22 88 34 164
-248 23 56 125 43
-249 24 47 30 41
-250 57 25 29 76
-251 58 91 26 38
-252 59 27 42 86
-253 25 49 39 29
-254 24 49 39 30
-255 100 36 62 32
-256 33 71 105 52
-257 13 84 63 120
-258 14 37 64 65
-259 66 110 16 60
-260 132 67 17 73
-261 68 69 51 19
-262 102 70 127 20
-263 145 36 62 21
-264 22 88 71 52
-265 46 27 74 86
-266 28 50 75 97
-267 77 99 45 31
-268 78 100 32 54
-269 33 78 105 54
-270 34 79 161 164
-271 55 35 182 119
-272 80 37 149 64
-273 26 81 38 93
-274 47 103 82 41
-275 123 59 83 42
-276 23 58 91 43
-277 44 84 117 63
-278 57 128 53 76
-279 89 145 114 21
-280 22 88 90 115
-281 27 94 138 86
-282 104 28 50 95
-283 45 31 75 97
-284 100 130 32 98
-285 33 77 99 105
-286 35 57 119 76
-287 44 102 70 117
-288 46 74 75 97
-289 69 102 70 51
-290 78 128 53 54
-291 55 181 182 106
-292 34 107 142 164
-293 56 79 125 161
-294 58 91 108 141
-295 124 59 42 109
-296 111 122 36 62
-297 112 71 52 131
-298 113 136 84 63
-299 123 37 83 64
-300 66 110 89 114
-301 132 67 90 115
-302 77 99 103 82
-303 121 143 35 119
-304 44 126 117 151
-305 46 74 130 98
-306 69 51 75 97
-307 104 95 128 53
-308 56 103 125 82
-309 66 110 130 98
-310 77 99 132 67
-311 133 188 79 161
-312 55 134 160 182
-313 80 181 149 106
-314 81 93 107 142
-315 123 135 159 83
-316 58 91 113 136
-317 137 148 84 63
-318 57 147 139 76
-319 89 155 114 140
-320 90 115 108 141
-321 121 143 94 138
-322 111 122 104 95
-323 112 102 70 131
-324 56 146 125 162
-325 66 110 171 150
-326 132 67 126 151
-327 111 122 80 149
-328 112 81 93 131
-329 104 94 138 95
-330 133 188 181 106
-331 107 152 174 142
-332 79 180 161 153
-333 133 188 108 141
-334 134 124 160 109
-335 154 113 179 136
-336 155 123 83 140
-337 89 156 168 114
-338 90 157 169 115
-339 167 103 158 82
-340 121 143 135 159
-341 146 126 151 162
-342 147 139 130 98
-343 165 80 149 183
-344 166 81 93 170
-345 94 138 171 150
-346 124 147 139 109
-347 134 160 152 174
-348 154 179 181 106
-349 172 107 142 175
-350 133 188 135 159
-351 113 136 152 174
-352 180 137 148 153
-353 155 180 140 153
-354 173 184 108 141
-355 121 143 176 186
-356 111 122 177 178
-357 112 167 158 131
-358 154 146 179 162
-359 165 171 150 183
-360 166 126 170 151
-361 187 124 185 109
-362 167 158 137 148
-363 134 160 173 184
-364 155 140 152 174
-365 154 156 168 179
-366 157 169 172 175
-367 135 159 172 175
-368 189 146 191 162
-369 177 178 147 139
-370 165 180 183 153
-371 166 170 173 184
-372 187 171 150 185
-373 190 137 148 192
-374 177 156 178 168
-375 167 157 158 169
-376 176 173 184 186
-377 165 189 191 183
-378 166 190 170 192
-379 187 172 185 175
-380 156 168 190 192
-381 189 157 169 191
-382 176 177 178 186
-383 187 190 192 185
-384 176 189 191 186
0

**************