[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 384, 382 ] =
PL(CSI(Octahedron[3^4],16)).
(I) Following is a form readable by MAGMA:
g:=Graph<384|{ {160, 247}, {160, 249}, {147, 243}, {159, 255}, {146, 243}, {158,
255}, {147, 241}, {159, 253}, {146, 241}, {158, 253}, {145, 247}, {145, 249},
{130, 246}, {131, 246}, {130, 244}, {131, 244}, {128, 248}, {132, 252}, {128,
249}, {133, 252}, {132, 250}, {133, 250}, {91, 219}, {127, 255}, {126, 254},
{114, 242}, {115, 243}, {90, 219}, {127, 254}, {126, 255}, {114, 243}, {115,
242}, {91, 217}, {90, 217}, {66, 198}, {67, 198}, {66, 196}, {89, 223}, {67,
196}, {88, 223}, {64, 200}, {68, 204}, {93, 213}, {113, 249}, {64, 201}, {69,
204}, {92, 213}, {113, 248}, {68, 202}, {93, 211}, {69, 202}, {92, 211}, {72,
216}, {83, 195}, {95, 207}, {73, 216}, {82, 195}, {94, 207}, {83, 193}, {95,
205}, {82, 193}, {94, 205}, {70, 210}, {74, 222}, {98, 246}, {71, 210}, {75,
222}, {99, 246}, {70, 208}, {74, 220}, {81, 199}, {99, 245}, {71, 208}, {75,
220}, {98, 245}, {81, 201}, {100, 252}, {101, 252}, {96, 250}, {96, 251}, {72,
214}, {101, 251}, {73, 214}, {100, 251}, {80, 240}, {78, 234}, {81, 245}, {95,
251}, {79, 234}, {81, 244}, {95, 250}, {78, 232}, {82, 244}, {79, 232}, {82,
245}, {96, 199}, {76, 228}, {77, 228}, {96, 201}, {76, 226}, {65, 238}, {77,
226}, {65, 241}, {66, 242}, {87, 231}, {65, 240}, {86, 231}, {87, 229}, {65,
242}, {68, 247}, {66, 241}, {86, 229}, {67, 247}, {69, 253}, {70, 254}, {85,
237}, {89, 225}, {84, 237}, {88, 225}, {67, 248}, {70, 253}, {69, 254}, {68,
248}, {80, 238}, {85, 235}, {84, 235}, {26, 218}, {48, 240}, {27, 218}, {27,
217}, {26, 217}, {46, 234}, {47, 234}, {2, 196}, {47, 233}, {25, 223}, {3, 197},
{2, 197}, {46, 233}, {24, 223}, {3, 196}, {28, 212}, {44, 228}, {29, 212}, {45,
228}, {4, 202}, {45, 227}, {33, 239}, {29, 211}, {5, 203}, {4, 203}, {44, 227},
{28, 211}, {5, 202}, {18, 194}, {55, 231}, {54, 230}, {30, 206}, {19, 194}, {55,
230}, {54, 231}, {33, 240}, {31, 206}, {19, 193}, {31, 205}, {18, 193}, {30,
205}, {6, 208}, {17, 199}, {11, 221}, {10, 220}, {7, 209}, {6, 209}, {11, 220},
{10, 221}, {7, 208}, {52, 236}, {57, 225}, {56, 224}, {53, 237}, {17, 200}, {57,
224}, {56, 225}, {53, 236}, {52, 237}, {8, 214}, {9, 215}, {8, 215}, {48, 239},
{9, 214}, {58, 218}, {59, 219}, {58, 219}, {59, 218}, {34, 198}, {35, 198}, {14,
232}, {35, 197}, {15, 233}, {14, 233}, {34, 197}, {32, 199}, {15, 232}, {32,
200}, {61, 213}, {60, 212}, {36, 204}, {37, 204}, {61, 212}, {60, 213}, {1,
239}, {37, 203}, {13, 227}, {12, 226}, {1, 238}, {36, 203}, {13, 226}, {12,
227}, {22, 230}, {63, 207}, {62, 206}, {51, 195}, {50, 194}, {40, 216}, {23,
230}, {63, 206}, {62, 207}, {51, 194}, {50, 195}, {41, 216}, {23, 229}, {22,
229}, {38, 210}, {42, 222}, {39, 210}, {43, 222}, {39, 209}, {43, 221}, {38,
209}, {42, 221}, {20, 236}, {49, 201}, {24, 224}, {21, 236}, {49, 200}, {25,
224}, {16, 238}, {41, 215}, {21, 235}, {16, 239}, {40, 215}, {20, 235}, {106,
362}, {106, 363}, {103, 357}, {105, 363}, {103, 356}, {105, 362}, {119, 372},
{119, 371}, {32, 298}, {32, 299}, {116, 383}, {120, 371}, {104, 356}, {112,
380}, {115, 383}, {117, 377}, {118, 378}, {120, 372}, {104, 357}, {112, 381},
{117, 378}, {118, 377}, {111, 381}, {111, 380}, {123, 360}, {121, 365}, {124,
360}, {122, 366}, {121, 366}, {122, 365}, {110, 374}, {110, 375}, {64, 346},
{107, 369}, {109, 375}, {64, 347}, {107, 368}, {109, 374}, {124, 359}, {108,
368}, {126, 354}, {125, 353}, {123, 359}, {108, 369}, {125, 354}, {126, 353},
{1, 289}, {2, 290}, {1, 290}, {127, 348}, {4, 295}, {2, 289}, {3, 295}, {127,
347}, {25, 317}, {113, 341}, {114, 342}, {25, 316}, {26, 316}, {26, 317}, {113,
342}, {114, 341}, {5, 301}, {6, 302}, {28, 310}, {3, 296}, {28, 311}, {6, 301},
{5, 302}, {4, 296}, {29, 305}, {27, 311}, {27, 310}, {29, 304}, {30, 304}, {30,
305}, {9, 313}, {10, 314}, {98, 338}, {98, 339}, {97, 339}, {7, 308}, {179,
384}, {12, 319}, {10, 313}, {9, 314}, {97, 338}, {7, 307}, {180, 384}, {31,
299}, {17, 293}, {11, 319}, {17, 292}, {31, 298}, {18, 292}, {18, 293}, {102,
350}, {102, 351}, {99, 345}, {101, 351}, {8, 307}, {99, 344}, {101, 350}, {8,
308}, {100, 344}, {100, 345}, {41, 361}, {74, 266}, {73, 265}, {42, 362}, {97,
288}, {15, 332}, {76, 271}, {74, 265}, {73, 266}, {71, 260}, {44, 367}, {42,
361}, {41, 362}, {39, 356}, {15, 331}, {75, 271}, {71, 259}, {55, 371}, {43,
367}, {39, 355}, {87, 275}, {55, 370}, {87, 274}, {13, 325}, {14, 326}, {52,
382}, {56, 370}, {84, 286}, {88, 274}, {11, 320}, {72, 259}, {56, 371}, {52,
383}, {48, 379}, {40, 355}, {14, 325}, {13, 326}, {80, 283}, {84, 287}, {88,
275}, {12, 320}, {72, 260}, {53, 377}, {51, 383}, {48, 380}, {40, 356}, {80,
284}, {83, 287}, {85, 281}, {51, 382}, {53, 376}, {83, 286}, {85, 280}, {54,
376}, {86, 280}, {54, 377}, {86, 281}, {112, 288}, {47, 380}, {79, 284}, {23,
323}, {57, 365}, {47, 379}, {79, 283}, {89, 269}, {23, 322}, {57, 364}, {89,
268}, {58, 364}, {90, 268}, {58, 365}, {90, 269}, {45, 373}, {46, 374}, {77,
277}, {78, 278}, {20, 334}, {60, 358}, {24, 322}, {92, 262}, {16, 331}, {75,
272}, {60, 359}, {46, 373}, {45, 374}, {43, 368}, {24, 323}, {20, 335}, {77,
278}, {78, 277}, {92, 263}, {16, 332}, {61, 353}, {59, 359}, {44, 368}, {21,
329}, {19, 335}, {76, 272}, {91, 263}, {93, 257}, {19, 334}, {61, 352}, {59,
358}, {21, 328}, {91, 262}, {93, 256}, {22, 328}, {62, 352}, {94, 256}, {22,
329}, {62, 353}, {94, 257}, {104, 264}, {118, 278}, {119, 279}, {105, 264},
{118, 279}, {119, 278}, {49, 341}, {63, 347}, {102, 258}, {106, 270}, {49, 340},
{63, 346}, {103, 258}, {107, 270}, {50, 340}, {103, 257}, {107, 269}, {50, 341},
{102, 257}, {106, 269}, {116, 284}, {117, 285}, {120, 272}, {121, 273}, {116,
285}, {117, 284}, {120, 273}, {121, 272}, {105, 263}, {104, 263}, {112, 287},
{33, 337}, {34, 338}, {122, 266}, {123, 267}, {122, 267}, {123, 266}, {33, 338},
{36, 343}, {34, 337}, {35, 343}, {110, 282}, {111, 282}, {111, 281}, {110, 281},
{37, 349}, {125, 261}, {38, 350}, {108, 276}, {124, 260}, {109, 276}, {125,
260}, {124, 261}, {35, 344}, {38, 349}, {37, 350}, {36, 344}, {97, 287}, {109,
275}, {108, 275}, {136, 264}, {187, 315}, {151, 279}, {137, 264}, {186, 315},
{150, 279}, {151, 277}, {187, 313}, {150, 277}, {186, 313}, {134, 258}, {162,
294}, {138, 270}, {135, 258}, {163, 294}, {139, 270}, {134, 256}, {185, 319},
{162, 292}, {138, 268}, {135, 256}, {184, 319}, {163, 292}, {139, 268}, {149,
285}, {189, 309}, {164, 300}, {153, 273}, {148, 285}, {188, 309}, {165, 300},
{152, 273}, {160, 299}, {160, 300}, {136, 262}, {189, 307}, {164, 298}, {149,
283}, {144, 286}, {137, 262}, {188, 307}, {165, 298}, {148, 283}, {155, 267},
{191, 303}, {179, 291}, {168, 312}, {154, 267}, {190, 303}, {178, 291}, {169,
312}, {155, 265}, {191, 301}, {179, 289}, {154, 265}, {190, 301}, {178, 289},
{142, 282}, {170, 318}, {166, 306}, {143, 282}, {171, 318}, {167, 306}, {142,
280}, {177, 295}, {170, 316}, {166, 304}, {153, 271}, {143, 280}, {171, 316},
{167, 304}, {152, 271}, {140, 276}, {177, 297}, {157, 261}, {141, 276}, {156,
261}, {192, 346}, {192, 348}, {140, 274}, {168, 310}, {157, 259}, {129, 286},
{169, 310}, {156, 259}, {141, 274}, {130, 290}, {129, 288}, {130, 291}, {129,
291}, {129, 290}, {155, 312}, {153, 317}, {156, 312}, {154, 318}, {153, 318},
{154, 317}, {134, 302}, {134, 303}, {131, 297}, {133, 303}, {131, 296}, {156,
311}, {133, 302}, {132, 296}, {158, 306}, {157, 305}, {155, 311}, {132, 297},
{157, 306}, {158, 305}, {138, 314}, {144, 288}, {138, 315}, {135, 309}, {137,
315}, {135, 308}, {159, 300}, {137, 314}, {145, 293}, {159, 299}, {146, 294},
{145, 294}, {146, 293}, {136, 308}, {136, 309}, {169, 361}, {170, 363}, {143,
333}, {169, 363}, {167, 357}, {143, 332}, {183, 372}, {172, 367}, {170, 361},
{147, 336}, {148, 336}, {171, 367}, {167, 355}, {183, 370}, {142, 326}, {142,
327}, {139, 321}, {184, 370}, {180, 382}, {141, 327}, {139, 320}, {176, 379},
{168, 355}, {141, 326}, {140, 320}, {184, 372}, {182, 378}, {140, 321}, {181,
376}, {179, 382}, {176, 381}, {168, 357}, {182, 376}, {181, 378}, {175, 381},
{151, 324}, {187, 360}, {151, 323}, {188, 360}, {186, 366}, {175, 379}, {185,
364}, {186, 364}, {185, 366}, {173, 373}, {174, 375}, {171, 369}, {188, 358},
{173, 375}, {128, 347}, {174, 373}, {152, 323}, {148, 335}, {128, 348}, {190,
354}, {152, 324}, {150, 330}, {149, 329}, {147, 335}, {144, 332}, {144, 333},
{189, 352}, {187, 358}, {172, 369}, {190, 352}, {149, 330}, {189, 354}, {150,
329}, {176, 336}, {191, 348}, {174, 330}, {178, 342}, {175, 330}, {191, 346},
{177, 340}, {174, 328}, {178, 340}, {175, 328}, {192, 295}, {177, 342}, {172,
324}, {173, 324}, {192, 297}, {172, 322}, {161, 334}, {173, 322}, {161, 337},
{183, 327}, {161, 336}, {182, 327}, {162, 339}, {161, 339}, {183, 325}, {115,
384}, {182, 325}, {164, 343}, {162, 337}, {116, 384}, {163, 343}, {165, 349},
{185, 321}, {181, 333}, {166, 351}, {184, 321}, {180, 333}, {163, 345}, {165,
351}, {166, 349}, {164, 345}, {176, 334}, {181, 331}, {180, 331} }>;
(II) A more general form is to represent the graph as the orbit of {160, 247}
under the group generated by the following permutations:
a: (1, 33, 65)(2, 34, 66)(3, 35, 67)(4, 36, 68)(5, 37, 69)(6, 38, 70)(7, 39,
71)(8, 40, 72)(9, 41, 73)(10, 42, 74)(11, 43, 75)(12, 44, 76)(13, 45, 77)(14,
46, 78)(15, 47, 79)(16, 48, 80)(17, 49, 81)(18, 50, 82)(19, 51, 83)(20, 52,
84)(21, 53, 85)(22, 54, 86)(23, 55, 87)(24, 56, 88)(25, 57, 89)(26, 58, 90)(27,
59, 91)(28, 60, 92)(29, 61, 93)(30, 62, 94)(31, 63, 95)(32, 64, 96)(97, 147,
179)(98, 146, 178)(99, 145, 177)(100, 160, 192)(101, 159, 191)(102, 158,
190)(103, 157, 189)(104, 156, 188)(105, 155, 187)(106, 154, 186)(107, 153,
185)(108, 152, 184)(109, 151, 183)(110, 150, 182)(111, 149, 181)(112, 148,
180)(113, 131, 163)(114, 130, 162)(115, 129, 161)(116, 144, 176)(117, 143,
175)(118, 142, 174)(119, 141, 173)(120, 140, 172)(121, 139, 171)(122, 138,
170)(123, 137, 169)(124, 136, 168)(125, 135, 167)(126, 134, 166)(127, 133,
165)(128, 132, 164)(193, 194, 195)(196, 197, 198)(199, 200, 201)(202, 203,
204)(205, 206, 207)(208, 209, 210)(211, 212, 213)(214, 215, 216)(217, 218,
219)(220, 221, 222)(223, 224, 225)(226, 227, 228)(229, 230, 231)(232, 233,
234)(235, 236, 237)(238, 239, 240)(241, 289, 338)(242, 290, 337)(243, 291,
339)(244, 292, 341)(245, 293, 340)(246, 294, 342)(247, 295, 344)(248, 296,
343)(249, 297, 345)(250, 298, 347)(251, 299, 346)(252, 300, 348)(253, 301,
350)(254, 302, 349)(255, 303, 351)(256, 304, 353)(257, 305, 352)(258, 306,
354)(259, 307, 356)(260, 308, 355)(261, 309, 357)(262, 310, 359)(263, 311,
358)(264, 312, 360)(265, 313, 362)(266, 314, 361)(267, 315, 363)(268, 316,
365)(269, 317, 364)(270, 318, 366)(271, 319, 368)(272, 320, 367)(273, 321,
369)(274, 322, 371)(275, 323, 370)(276, 324, 372)(277, 325, 374)(278, 326,
373)(279, 327, 375)(280, 328, 377)(281, 329, 376)(282, 330, 378)(283, 331,
380)(284, 332, 379)(285, 333, 381)(286, 334, 383)(287, 335, 382)(288, 336,
384) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (33, 65)(34, 66)(35, 67)(36, 68)(37, 69)(38, 70)(39, 71)(40, 72)(41, 73)(42,
74)(43, 75)(44, 76)(45, 77)(46, 78)(47, 79)(48, 80)(49, 81)(50, 82)(51, 83)(52,
84)(53, 85)(54, 86)(55, 87)(56, 88)(57, 89)(58, 90)(59, 91)(60, 92)(61, 93)(62,
94)(63, 95)(64, 96)(97, 115)(98, 114)(99, 113)(100, 128)(101, 127)(102,
126)(103, 125)(104, 124)(105, 123)(106, 122)(107, 121)(108, 120)(109, 119)(110,
118)(111, 117)(112, 116)(129, 179)(130, 178)(131, 177)(132, 192)(133, 191)(134,
190)(135, 189)(136, 188)(137, 187)(138, 186)(139, 185)(140, 184)(141, 183)(142,
182)(143, 181)(144, 180)(145, 163)(146, 162)(147, 161)(148, 176)(149, 175)(150,
174)(151, 173)(152, 172)(153, 171)(154, 170)(155, 169)(156, 168)(157, 167)(158,
166)(159, 165)(160, 164)(193, 194)(196, 197)(199, 200)(202, 203)(205, 206)(208,
209)(211, 212)(214, 215)(217, 218)(220, 221)(223, 224)(226, 227)(229, 230)(232,
233)(235, 236)(238, 239)(241, 337)(242, 338)(243, 339)(244, 340)(245, 341)(246,
342)(247, 343)(248, 344)(249, 345)(250, 346)(251, 347)(252, 348)(253, 349)(254,
350)(255, 351)(256, 352)(257, 353)(258, 354)(259, 355)(260, 356)(261, 357)(262,
358)(263, 359)(264, 360)(265, 361)(266, 362)(267, 363)(268, 364)(269, 365)(270,
366)(271, 367)(272, 368)(273, 369)(274, 370)(275, 371)(276, 372)(277, 373)(278,
374)(279, 375)(280, 376)(281, 377)(282, 378)(283, 379)(284, 380)(285, 381)(286,
382)(287, 383)(288, 384)(289, 290)(292, 293)(295, 296)(298, 299)(301, 302)(304,
305)(307, 308)(310, 311)(313, 314)(316, 317)(319, 320)(322, 323)(325, 326)(328,
329)(331, 332)(334, 335)
c: (2, 16)(3, 15)(4, 14)(5, 13)(6, 12)(7, 11)(8, 10)(17, 21)(18, 20)(22, 32)(23,
31)(24, 30)(25, 29)(26, 28)(33, 129)(34, 144)(35, 143)(36, 142)(37, 141)(38,
140)(39, 139)(40, 138)(41, 137)(42, 136)(43, 135)(44, 134)(45, 133)(46, 132)(47,
131)(48, 130)(49, 149)(50, 148)(51, 147)(52, 146)(53, 145)(54, 160)(55, 159)(56,
158)(57, 157)(58, 156)(59, 155)(60, 154)(61, 153)(62, 152)(63, 151)(64, 150)(65,
179)(66, 180)(67, 181)(68, 182)(69, 183)(70, 184)(71, 185)(72, 186)(73, 187)(74,
188)(75, 189)(76, 190)(77, 191)(78, 192)(79, 177)(80, 178)(81, 175)(82, 176)(83,
161)(84, 162)(85, 163)(86, 164)(87, 165)(88, 166)(89, 167)(90, 168)(91, 169)(92,
170)(93, 171)(94, 172)(95, 173)(96, 174)(98, 112)(99, 111)(100, 110)(101,
109)(102, 108)(103, 107)(104, 106)(113, 117)(114, 116)(118, 128)(119, 127)(120,
126)(121, 125)(122, 124)(193, 334)(194, 335)(195, 336)(196, 331)(197, 332)(198,
333)(199, 328)(200, 329)(201, 330)(202, 325)(203, 326)(204, 327)(205, 322)(206,
323)(207, 324)(208, 319)(209, 320)(210, 321)(211, 316)(212, 317)(213, 318)(214,
313)(215, 314)(216, 315)(217, 310)(218, 311)(219, 312)(220, 307)(221, 308)(222,
309)(223, 304)(224, 305)(225, 306)(226, 301)(227, 302)(228, 303)(229, 298)(230,
299)(231, 300)(232, 295)(233, 296)(234, 297)(235, 292)(236, 293)(237, 294)(238,
289)(239, 290)(240, 291)(241, 382)(242, 384)(243, 383)(244, 379)(245, 381)(246,
380)(247, 376)(248, 378)(249, 377)(250, 373)(251, 375)(252, 374)(253, 370)(254,
372)(255, 371)(256, 367)(257, 369)(258, 368)(259, 364)(260, 366)(261, 365)(262,
361)(263, 363)(264, 362)(265, 358)(266, 360)(267, 359)(268, 355)(269, 357)(270,
356)(271, 352)(272, 354)(273, 353)(274, 349)(275, 351)(276, 350)(277, 346)(278,
348)(279, 347)(280, 343)(281, 345)(282, 344)(283, 340)(284, 342)(285, 341)(286,
337)(287, 339)(288, 338)
d: (1, 2)(3, 16)(4, 15)(5, 14)(6, 13)(7, 12)(8, 11)(9, 10)(17, 20)(18, 19)(21,
32)(22, 31)(23, 30)(24, 29)(25, 28)(26, 27)(33, 34)(35, 48)(36, 47)(37, 46)(38,
45)(39, 44)(40, 43)(41, 42)(49, 52)(50, 51)(53, 64)(54, 63)(55, 62)(56, 61)(57,
60)(58, 59)(65, 66)(67, 80)(68, 79)(69, 78)(70, 77)(71, 76)(72, 75)(73, 74)(81,
84)(82, 83)(85, 96)(86, 95)(87, 94)(88, 93)(89, 92)(90, 91)(97, 98)(99,
112)(100, 111)(101, 110)(102, 109)(103, 108)(104, 107)(105, 106)(113, 116)(114,
115)(117, 128)(118, 127)(119, 126)(120, 125)(121, 124)(122, 123)(129, 130)(131,
144)(132, 143)(133, 142)(134, 141)(135, 140)(136, 139)(137, 138)(145, 148)(146,
147)(149, 160)(150, 159)(151, 158)(152, 157)(153, 156)(154, 155)(161, 162)(163,
176)(164, 175)(165, 174)(166, 173)(167, 172)(168, 171)(169, 170)(177, 180)(178,
179)(181, 192)(182, 191)(183, 190)(184, 189)(185, 188)(186, 187)(196, 238)(197,
239)(198, 240)(199, 235)(200, 236)(201, 237)(202, 232)(203, 233)(204, 234)(205,
229)(206, 230)(207, 231)(208, 226)(209, 227)(210, 228)(211, 223)(212, 224)(213,
225)(214, 220)(215, 221)(216, 222)(244, 286)(245, 287)(246, 288)(247, 283)(248,
284)(249, 285)(250, 280)(251, 281)(252, 282)(253, 277)(254, 278)(255, 279)(256,
274)(257, 275)(258, 276)(259, 271)(260, 272)(261, 273)(262, 268)(263, 269)(264,
270)(292, 334)(293, 335)(294, 336)(295, 331)(296, 332)(297, 333)(298, 328)(299,
329)(300, 330)(301, 325)(302, 326)(303, 327)(304, 322)(305, 323)(306, 324)(307,
319)(308, 320)(309, 321)(310, 316)(311, 317)(312, 318)(340, 382)(341, 383)(342,
384)(343, 379)(344, 380)(345, 381)(346, 376)(347, 377)(348, 378)(349, 373)(350,
374)(351, 375)(352, 370)(353, 371)(354, 372)(355, 367)(356, 368)(357, 369)(358,
364)(359, 365)(360, 366)
e: (1, 17)(2, 18)(3, 19)(4, 20)(5, 21)(6, 22)(7, 23)(8, 24)(9, 25)(10, 26)(11,
27)(12, 28)(13, 29)(14, 30)(15, 31)(16, 32)(33, 49)(34, 50)(35, 51)(36, 52)(37,
53)(38, 54)(39, 55)(40, 56)(41, 57)(42, 58)(43, 59)(44, 60)(45, 61)(46, 62)(47,
63)(48, 64)(65, 81)(66, 82)(67, 83)(68, 84)(69, 85)(70, 86)(71, 87)(72, 88)(73,
89)(74, 90)(75, 91)(76, 92)(77, 93)(78, 94)(79, 95)(80, 96)(97, 113)(98,
114)(99, 115)(100, 116)(101, 117)(102, 118)(103, 119)(104, 120)(105, 121)(106,
122)(107, 123)(108, 124)(109, 125)(110, 126)(111, 127)(112, 128)(129, 145)(130,
146)(131, 147)(132, 148)(133, 149)(134, 150)(135, 151)(136, 152)(137, 153)(138,
154)(139, 155)(140, 156)(141, 157)(142, 158)(143, 159)(144, 160)(161, 177)(162,
178)(163, 179)(164, 180)(165, 181)(166, 182)(167, 183)(168, 184)(169, 185)(170,
186)(171, 187)(172, 188)(173, 189)(174, 190)(175, 191)(176, 192)(193, 196)(194,
197)(195, 198)(199, 238)(200, 239)(201, 240)(202, 235)(203, 236)(204, 237)(205,
232)(206, 233)(207, 234)(208, 229)(209, 230)(210, 231)(211, 226)(212, 227)(213,
228)(214, 223)(215, 224)(216, 225)(217, 220)(218, 221)(219, 222)(241, 244)(242,
245)(243, 246)(247, 286)(248, 287)(249, 288)(250, 283)(251, 284)(252, 285)(253,
280)(254, 281)(255, 282)(256, 277)(257, 278)(258, 279)(259, 274)(260, 275)(261,
276)(262, 271)(263, 272)(264, 273)(265, 268)(266, 269)(267, 270)(289, 292)(290,
293)(291, 294)(295, 334)(296, 335)(297, 336)(298, 331)(299, 332)(300, 333)(301,
328)(302, 329)(303, 330)(304, 325)(305, 326)(306, 327)(307, 322)(308, 323)(309,
324)(310, 319)(311, 320)(312, 321)(313, 316)(314, 317)(315, 318)(337, 340)(338,
341)(339, 342)(343, 382)(344, 383)(345, 384)(346, 379)(347, 380)(348, 381)(349,
376)(350, 377)(351, 378)(352, 373)(353, 374)(354, 375)(355, 370)(356, 371)(357,
372)(358, 367)(359, 368)(360, 369)(361, 364)(362, 365)(363, 366)
C4[ 384, 382 ]
384
-1 289 290 238 239
-2 289 290 196 197
-3 196 295 197 296
-4 202 203 295 296
-5 202 301 203 302
-6 209 301 302 208
-7 209 308 208 307
-8 308 214 215 307
-9 214 313 215 314
-10 220 221 313 314
-11 220 319 221 320
-12 319 320 226 227
-13 226 325 227 326
-14 232 233 325 326
-15 232 331 233 332
-16 331 332 238 239
-17 199 200 292 293
-18 193 292 194 293
-19 334 335 193 194
-20 235 334 236 335
-21 235 236 328 329
-22 229 328 230 329
-23 322 323 229 230
-24 223 322 224 323
-25 223 224 316 317
-26 217 316 218 317
-27 310 311 217 218
-28 211 310 212 311
-29 211 212 304 305
-30 205 304 206 305
-31 298 299 205 206
-32 199 298 200 299
-33 337 239 338 240
-34 198 337 338 197
-35 198 343 344 197
-36 343 344 203 204
-37 203 204 349 350
-38 209 210 349 350
-39 209 210 355 356
-40 355 356 215 216
-41 215 216 361 362
-42 221 222 361 362
-43 221 222 367 368
-44 367 368 227 228
-45 374 227 228 373
-46 374 233 234 373
-47 233 234 379 380
-48 379 380 239 240
-49 341 200 201 340
-50 341 194 195 340
-51 194 195 382 383
-52 236 237 382 383
-53 376 377 236 237
-54 231 376 377 230
-55 231 370 371 230
-56 224 225 370 371
-57 364 365 224 225
-58 364 365 218 219
-59 358 359 218 219
-60 212 213 358 359
-61 352 353 212 213
-62 352 353 206 207
-63 346 347 206 207
-64 200 201 346 347
-65 242 238 240 241
-66 198 242 196 241
-67 198 247 248 196
-68 202 247 204 248
-69 253 254 202 204
-70 253 210 254 208
-71 210 259 260 208
-72 214 259 216 260
-73 265 266 214 216
-74 220 265 222 266
-75 220 222 271 272
-76 226 271 228 272
-77 277 278 226 228
-78 232 277 234 278
-79 232 234 283 284
-80 238 283 240 284
-81 199 244 201 245
-82 244 245 193 195
-83 286 287 193 195
-84 286 287 235 237
-85 235 280 237 281
-86 231 280 281 229
-87 231 275 229 274
-88 275 223 225 274
-89 223 268 225 269
-90 268 269 217 219
-91 217 262 219 263
-92 211 213 262 263
-93 211 256 213 257
-94 256 257 205 207
-95 205 250 207 251
-96 199 201 250 251
-97 287 288 338 339
-98 245 246 338 339
-99 245 344 246 345
-100 344 345 251 252
-101 251 350 252 351
-102 257 258 350 351
-103 257 356 258 357
-104 264 356 357 263
-105 264 363 263 362
-106 363 269 270 362
-107 269 368 270 369
-108 275 276 368 369
-109 275 374 276 375
-110 374 375 281 282
-111 281 380 282 381
-112 287 288 380 381
-113 341 342 248 249
-114 242 341 243 342
-115 242 243 383 384
-116 284 383 285 384
-117 377 378 284 285
-118 278 377 279 378
-119 278 279 371 372
-120 272 371 273 372
-121 365 366 272 273
-122 266 365 267 366
-123 266 267 359 360
-124 260 359 261 360
-125 353 354 260 261
-126 254 353 255 354
-127 254 255 347 348
-128 248 347 249 348
-129 286 288 290 291
-130 244 246 290 291
-131 297 244 246 296
-132 297 250 252 296
-133 302 303 250 252
-134 256 258 302 303
-135 308 309 256 258
-136 264 308 309 262
-137 264 314 315 262
-138 268 270 314 315
-139 320 321 268 270
-140 276 320 321 274
-141 276 326 327 274
-142 280 282 326 327
-143 332 333 280 282
-144 286 288 332 333
-145 247 249 293 294
-146 243 293 294 241
-147 243 335 336 241
-148 335 336 283 285
-149 330 283 285 329
-150 330 277 279 329
-151 277 279 323 324
-152 323 324 271 273
-153 271 273 317 318
-154 265 267 317 318
-155 265 267 311 312
-156 311 312 259 261
-157 259 261 305 306
-158 253 255 305 306
-159 253 255 299 300
-160 299 300 247 249
-161 334 336 337 339
-162 292 337 294 339
-163 343 345 292 294
-164 298 343 300 345
-165 298 300 349 351
-166 304 349 306 351
-167 355 357 304 306
-168 310 355 312 357
-169 363 310 312 361
-170 363 316 361 318
-171 367 369 316 318
-172 322 367 324 369
-173 375 322 324 373
-174 330 375 328 373
-175 330 379 381 328
-176 334 379 336 381
-177 297 342 295 340
-178 342 289 291 340
-179 289 291 382 384
-180 331 333 382 384
-181 331 376 333 378
-182 376 378 325 327
-183 325 370 327 372
-184 319 321 370 372
-185 319 364 321 366
-186 364 366 313 315
-187 313 358 315 360
-188 309 358 360 307
-189 352 309 354 307
-190 352 354 301 303
-191 301 346 303 348
-192 297 346 348 295
-193 82 83 18 19
-194 50 18 51 19
-195 82 50 83 51
-196 66 67 2 3
-197 34 2 35 3
-198 66 34 67 35
-199 81 17 96 32
-200 49 17 64 32
-201 81 49 96 64
-202 68 69 4 5
-203 36 4 37 5
-204 68 36 69 37
-205 94 95 30 31
-206 62 30 63 31
-207 94 62 95 63
-208 70 71 6 7
-209 38 6 39 7
-210 70 38 71 39
-211 92 93 28 29
-212 60 28 61 29
-213 92 60 93 61
-214 72 73 8 9
-215 40 8 41 9
-216 72 40 73 41
-217 90 91 26 27
-218 58 26 59 27
-219 90 58 91 59
-220 11 74 75 10
-221 11 42 10 43
-222 74 42 75 43
-223 88 89 24 25
-224 56 24 57 25
-225 88 56 89 57
-226 77 12 13 76
-227 44 12 45 13
-228 44 77 45 76
-229 22 23 86 87
-230 22 55 23 54
-231 55 86 54 87
-232 78 79 14 15
-233 46 14 47 15
-234 78 46 79 47
-235 84 85 20 21
-236 52 20 53 21
-237 84 52 85 53
-238 1 80 16 65
-239 33 1 48 16
-240 33 80 48 65
-241 66 146 147 65
-242 66 114 115 65
-243 146 114 147 115
-244 81 82 130 131
-245 99 81 82 98
-246 99 130 98 131
-247 67 68 145 160
-248 67 68 113 128
-249 145 113 160 128
-250 132 133 95 96
-251 100 101 95 96
-252 132 100 133 101
-253 69 70 158 159
-254 69 70 126 127
-255 158 126 159 127
-256 134 135 93 94
-257 102 103 93 94
-258 134 102 135 103
-259 156 157 71 72
-260 124 125 71 72
-261 156 124 157 125
-262 91 92 136 137
-263 91 92 104 105
-264 136 104 137 105
-265 154 155 73 74
-266 122 123 73 74
-267 154 122 155 123
-268 89 90 138 139
-269 89 90 106 107
-270 138 106 139 107
-271 75 152 76 153
-272 121 75 76 120
-273 121 152 120 153
-274 88 140 141 87
-275 88 108 87 109
-276 140 108 141 109
-277 77 78 150 151
-278 77 78 118 119
-279 150 118 151 119
-280 143 85 86 142
-281 110 111 85 86
-282 110 143 111 142
-283 79 80 148 149
-284 79 80 116 117
-285 148 116 149 117
-286 144 83 84 129
-287 112 83 84 97
-288 144 112 129 97
-289 1 2 178 179
-290 1 2 129 130
-291 178 179 129 130
-292 17 18 162 163
-293 145 146 17 18
-294 145 146 162 163
-295 177 3 4 192
-296 132 3 4 131
-297 132 177 192 131
-298 165 31 32 164
-299 159 160 31 32
-300 165 159 160 164
-301 190 191 5 6
-302 133 134 5 6
-303 133 134 190 191
-304 166 167 29 30
-305 157 158 29 30
-306 166 167 157 158
-307 188 189 7 8
-308 135 136 7 8
-309 188 189 135 136
-310 168 169 27 28
-311 155 156 27 28
-312 155 156 168 169
-313 187 9 10 186
-314 137 138 9 10
-315 187 137 138 186
-316 25 26 170 171
-317 154 25 26 153
-318 154 170 171 153
-319 11 12 184 185
-320 11 12 139 140
-321 139 140 184 185
-322 23 24 172 173
-323 23 24 151 152
-324 172 151 173 152
-325 13 14 182 183
-326 13 14 141 142
-327 182 183 141 142
-328 22 174 21 175
-329 22 149 150 21
-330 149 150 174 175
-331 15 180 16 181
-332 143 144 15 16
-333 143 144 180 181
-334 176 161 19 20
-335 147 148 19 20
-336 176 147 148 161
-337 33 34 161 162
-338 33 34 97 98
-339 161 162 97 98
-340 177 178 49 50
-341 113 114 49 50
-342 177 178 113 114
-343 35 36 163 164
-344 99 100 35 36
-345 99 100 163 164
-346 191 192 63 64
-347 127 128 63 64
-348 191 192 127 128
-349 165 166 37 38
-350 101 102 37 38
-351 165 166 101 102
-352 189 190 61 62
-353 125 126 61 62
-354 189 190 125 126
-355 167 168 39 40
-356 103 104 39 40
-357 167 168 103 104
-358 187 188 59 60
-359 123 124 59 60
-360 187 188 123 124
-361 169 170 41 42
-362 105 106 41 42
-363 169 170 105 106
-364 57 58 185 186
-365 121 122 57 58
-366 121 122 185 186
-367 44 171 172 43
-368 44 107 108 43
-369 171 172 107 108
-370 55 56 183 184
-371 55 56 119 120
-372 183 184 119 120
-373 45 46 173 174
-374 110 45 46 109
-375 110 173 174 109
-376 181 182 53 54
-377 117 118 53 54
-378 181 182 117 118
-379 176 47 48 175
-380 111 112 47 48
-381 176 111 112 175
-382 179 180 51 52
-383 115 116 51 52
-384 179 180 115 116
0