[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 384, 468 ] =
BGCG(UG(ATD[192,14]);K1;{6,9}).
(I) Following is a form readable by MAGMA:
g:=Graph<384|{ {192, 200}, {192, 203}, {192, 221}, {174, 238}, {187, 251}, {139,
202}, {143, 206}, {133, 199}, {187, 248}, {131, 199}, {173, 233}, {162, 231},
{136, 206}, {154, 211}, {145, 220}, {175, 226}, {167, 234}, {150, 219}, {155,
213}, {149, 218}, {157, 204}, {180, 229}, {145, 194}, {155, 207}, {181, 225},
{135, 210}, {180, 226}, {147, 196}, {175, 248}, {183, 239}, {165, 252}, {176,
233}, {171, 242}, {141, 214}, {177, 234}, {160, 251}, {144, 204}, {148, 201},
{190, 227}, {162, 252}, {139, 212}, {178, 237}, {129, 225}, {140, 237}, {177,
210}, {189, 222}, {172, 200}, {181, 209}, {136, 238}, {168, 206}, {140, 234},
{191, 215}, {179, 218}, {191, 214}, {189, 212}, {184, 209}, {182, 223}, {174,
196}, {145, 252}, {139, 229}, {154, 244}, {142, 225}, {191, 208}, {180, 219},
{160, 207}, {164, 212}, {166, 215}, {174, 223}, {138, 248}, {158, 236}, {150,
228}, {128, 243}, {183, 196}, {137, 250}, {142, 253}, {129, 245}, {171, 222},
{133, 242}, {130, 250}, {153, 227}, {167, 221}, {156, 231}, {177, 202}, {176,
203}, {173, 208}, {130, 253}, {186, 197}, {164, 219}, {79, 207}, {89, 217},
{124, 252}, {89, 216}, {93, 222}, {108, 239}, {116, 247}, {82, 215}, {78, 200},
{114, 244}, {95, 216}, {108, 228}, {74, 195}, {80, 217}, {99, 234}, {98, 233},
{65, 205}, {105, 229}, {80, 221}, {102, 232}, {90, 213}, {67, 211}, {112, 224},
{74, 219}, {99, 241}, {73, 218}, {112, 228}, {119, 227}, {117, 224}, {66, 213},
{93, 197}, {69, 220}, {83, 201}, {93, 199}, {98, 248}, {75, 208}, {100, 249},
{106, 247}, {66, 220}, {114, 236}, {120, 218}, {102, 194}, {125, 217}, {86,
243}, {108, 201}, {68, 226}, {76, 228}, {93, 245}, {109, 197}, {118, 222}, {127,
214}, {81, 251}, {89, 243}, {105, 194}, {115, 223}, {121, 212}, {70, 232}, {77,
227}, {66, 242}, {94, 239}, {127, 206}, {67, 241}, {74, 254}, {89, 236}, {64,
246}, {95, 233}, {103, 209}, {114, 196}, {122, 204}, {81, 230}, {106, 221}, {64,
250}, {114, 200}, {110, 213}, {116, 207}, {124, 199}, {68, 249}, {98, 220},
{109, 211}, {79, 240}, {96, 223}, {111, 208}, {26, 216}, {48, 242}, {27, 217},
{36, 231}, {60, 255}, {51, 240}, {5, 205}, {45, 229}, {40, 224}, {29, 215}, {57,
243}, {40, 226}, {13, 198}, {25, 210}, {34, 238}, {39, 235}, {12, 193}, {32,
237}, {2, 205}, {26, 203}, {62, 239}, {10, 216}, {53, 230}, {63, 236}, {43,
255}, {63, 235}, {57, 237}, {43, 254}, {34, 244}, {62, 232}, {47, 249}, {38,
255}, {16, 202}, {36, 255}, {61, 225}, {44, 241}, {40, 246}, {37, 250}, {6,
230}, {50, 210}, {38, 198}, {33, 193}, {11, 235}, {22, 244}, {13, 238}, {37,
193}, {3, 230}, {24, 254}, {32, 198}, {17, 246}, {42, 205}, {28, 251}, {3, 235},
{42, 194}, {14, 231}, {32, 201}, {23, 254}, {38, 202}, {46, 195}, {59, 214},
{27, 245}, {31, 240}, {7, 246}, {11, 249}, {18, 224}, {14, 253}, {39, 211}, {2,
247}, {6, 240}, {52, 195}, {16, 232}, {62, 198}, {61, 197}, {59, 195}, {51,
203}, {4, 253}, {8, 241}, {43, 209}, {54, 204}, {61, 193}, {11, 245}, {8, 247},
{14, 270}, {16, 272}, {28, 285}, {80, 337}, {31, 286}, {42, 296}, {123, 377},
{10, 265}, {58, 313}, {36, 295}, {9, 269}, {55, 307}, {2, 263}, {86, 339}, {24,
285}, {121, 380}, {86, 336}, {126, 376}, {6, 257}, {73, 334}, {100, 355}, {135,
384}, {1, 265}, {12, 260}, {8, 256}, {60, 309}, {97, 360}, {11, 257}, {18, 280},
{1, 266}, {55, 316}, {38, 301}, {17, 282}, {107, 352}, {75, 327}, {91, 343}, {4,
266}, {81, 351}, {22, 281}, {85, 346}, {56, 311}, {101, 362}, {124, 371}, {20,
260}, {69, 341}, {55, 295}, {36, 308}, {120, 360}, {68, 341}, {70, 343}, {26,
264}, {74, 344}, {44, 319}, {97, 370}, {101, 374}, {113, 354}, {122, 361}, {25,
269}, {84, 320}, {104, 380}, {12, 281}, {18, 263}, {118, 355}, {6, 272}, {42,
317}, {94, 329}, {96, 375}, {24, 256}, {82, 330}, {71, 351}, {26, 258}, {60,
293}, {109, 372}, {119, 366}, {125, 356}, {48, 298}, {73, 339}, {118, 364}, {15,
275}, {71, 347}, {45, 305}, {24, 261}, {91, 326}, {52, 297}, {22, 264}, {113,
367}, {61, 290}, {90, 325}, {94, 321}, {30, 318}, {85, 373}, {43, 267}, {95,
383}, {100, 324}, {106, 330}, {77, 364}, {90, 376}, {104, 331}, {55, 274}, {111,
330}, {116, 337}, {46, 264}, {92, 378}, {83, 373}, {56, 286}, {35, 260}, {105,
334}, {123, 348}, {65, 361}, {20, 317}, {92, 373}, {65, 360}, {62, 279}, {33,
264}, {13, 295}, {170, 384}, {30, 308}, {39, 268}, {46, 261}, {13, 289}, {97,
333}, {15, 290}, {30, 307}, {110, 323}, {113, 348}, {87, 377}, {77, 354}, {112,
351}, {2, 306}, {88, 360}, {49, 257}, {44, 285}, {67, 370}, {27, 297}, {60,
270}, {123, 329}, {1, 306}, {47, 284}, {21, 289}, {82, 358}, {107, 351}, {37,
275}, {110, 344}, {126, 328}, {64, 375}, {9, 305}, {120, 320}, {78, 375}, {96,
345}, {23, 301}, {127, 325}, {5, 318}, {80, 363}, {75, 368}, {69, 382}, {68,
383}, {58, 257}, {28, 295}, {115, 328}, {50, 270}, {71, 379}, {56, 260}, {103,
347}, {105, 341}, {39, 282}, {103, 346}, {104, 341}, {113, 332}, {125, 320},
{83, 365}, {34, 285}, {86, 361}, {15, 335}, {78, 270}, {63, 383}, {15, 334},
{87, 278}, {33, 352}, {21, 340}, {109, 300}, {112, 305}, {50, 368}, {41, 362},
{84, 279}, {7, 323}, {17, 340}, {92, 281}, {49, 372}, {102, 291}, {90, 284},
{25, 350}, {81, 278}, {54, 369}, {126, 313}, {83, 283}, {100, 300}, {27, 338},
{53, 380}, {29, 340}, {20, 350}, {23, 349}, {5, 334}, {85, 286}, {56, 371}, {35,
367}, {71, 267}, {69, 265}, {79, 258}, {115, 317}, {46, 353}, {31, 335}, {54,
358}, {53, 357}, {32, 368}, {30, 335}, {87, 262}, {111, 318}, {122, 299}, {126,
303}, {84, 262}, {125, 303}, {57, 365}, {94, 266}, {110, 314}, {33, 372}, {101,
304}, {4, 338}, {21, 323}, {12, 347}, {75, 284}, {41, 382}, {10, 338}, {72,
272}, {64, 280}, {63, 359}, {99, 315}, {7, 350}, {14, 340}, {58, 352}, {23,
332}, {52, 367}, {48, 363}, {41, 370}, {107, 304}, {121, 290}, {7, 347}, {106,
310}, {108, 304}, {120, 292}, {31, 322}, {72, 277}, {49, 364}, {103, 314}, {82,
268}, {88, 262}, {84, 266}, {127, 289}, {16, 335}, {88, 263}, {52, 363}, {51,
364}, {19, 332}, {116, 276}, {19, 370}, {65, 288}, {35, 322}, {59, 345}, {67,
288}, {96, 259}, {117, 278}, {50, 342}, {3, 358}, {73, 300}, {29, 376}, {21,
368}, {49, 343}, {76, 298}, {54, 336}, {44, 331}, {5, 365}, {121, 273}, {92,
309}, {107, 258}, {119, 286}, {123, 274}, {19, 377}, {117, 287}, {10, 353}, {87,
316}, {1, 365}, {40, 324}, {29, 369}, {101, 265}, {119, 283}, {48, 349}, {19,
381}, {70, 296}, {25, 375}, {9, 358}, {88, 311}, {53, 346}, {18, 381}, {99,
268}, {66, 306}, {45, 350}, {9, 381}, {41, 349}, {95, 299}, {111, 283}, {8,
381}, {70, 307}, {17, 359}, {78, 312}, {72, 319}, {85, 290}, {102, 273}, {72,
304}, {104, 272}, {28, 357}, {57, 320}, {51, 330}, {47, 342}, {122, 259}, {3,
377}, {91, 289}, {76, 310}, {35, 345}, {117, 271}, {118, 268}, {124, 263}, {4,
376}, {37, 345}, {20, 361}, {91, 294}, {59, 326}, {47, 338}, {22, 363}, {45,
339}, {77, 307}, {76, 306}, {97, 287}, {98, 284}, {34, 349}, {58, 325}, {181,
309}, {186, 314}, {148, 277}, {181, 311}, {190, 316}, {185, 315}, {176, 308},
{145, 276}, {165, 291}, {174, 296}, {129, 262}, {156, 276}, {167, 303}, {166,
302}, {159, 279}, {146, 283}, {166, 303}, {182, 316}, {136, 259}, {158, 274},
{161, 301}, {159, 273}, {164, 298}, {138, 261}, {169, 294}, {157, 269}, {189,
301}, {147, 258}, {183, 294}, {178, 288}, {170, 313}, {189, 297}, {153, 271},
{168, 319}, {188, 299}, {128, 281}, {131, 282}, {185, 291}, {148, 271}, {163,
312}, {156, 256}, {184, 292}, {165, 312}, {179, 302}, {178, 300}, {142, 273},
{160, 319}, {163, 259}, {179, 275}, {130, 291}, {182, 279}, {148, 309}, {154,
312}, {141, 302}, {188, 287}, {152, 315}, {146, 310}, {177, 277}, {128, 293},
{183, 274}, {155, 317}, {190, 280}, {166, 256}, {136, 288}, {140, 293}, {152,
305}, {151, 318}, {167, 269}, {185, 275}, {135, 299}, {133, 296}, {132, 298},
{161, 271}, {153, 311}, {152, 310}, {138, 292}, {187, 276}, {139, 315}, {187,
267}, {175, 287}, {150, 294}, {151, 292}, {143, 314}, {152, 302}, {179, 261},
{159, 297}, {129, 313}, {162, 280}, {170, 278}, {138, 308}, {165, 282}, {180,
267}, {170, 277}, {186, 378}, {147, 337}, {188, 382}, {172, 366}, {168, 362},
{161, 355}, {130, 321}, {137, 333}, {135, 322}, {131, 324}, {151, 336}, {143,
327}, {171, 354}, {186, 371}, {172, 359}, {144, 348}, {162, 366}, {132, 329},
{158, 336}, {175, 353}, {79, 384}, {173, 354}, {134, 329}, {151, 327}, {168,
378}, {169, 379}, {146, 321}, {149, 326}, {131, 343}, {133, 337}, {150, 323},
{157, 328}, {153, 332}, {159, 328}, {149, 333}, {134, 346}, {184, 356}, {163,
382}, {184, 357}, {176, 366}, {154, 378}, {134, 359}, {149, 372}, {146, 374},
{160, 325}, {192, 293}, {191, 344}, {137, 353}, {163, 331}, {155, 371}, {147,
379}, {142, 356}, {188, 342}, {144, 380}, {141, 352}, {172, 321}, {169, 324},
{132, 362}, {140, 355}, {173, 322}, {144, 383}, {182, 326}, {132, 373}, {157,
367}, {185, 331}, {115, 384}, {190, 333}, {171, 344}, {178, 327}, {134, 369},
{161, 342}, {156, 356}, {164, 348}, {169, 339}, {128, 379}, {158, 357}, {141,
374}, {143, 369}, {137, 374} }>;
(II) A more general form is to represent the graph as the orbit of {192, 200}
under the group generated by the following permutations:
a: (1, 2)(3, 11)(4, 18)(7, 21)(8, 10)(9, 47)(12, 13)(14, 64)(15, 30)(16, 31)(19,
27)(20, 32)(22, 34)(23, 52)(24, 46)(25, 50)(26, 44)(28, 33)(29, 40)(35, 38)(36,
37)(39, 63)(41, 80)(42, 83)(43, 59)(45, 75)(49, 53)(51, 104)(54, 100)(55,
61)(56, 62)(57, 65)(58, 81)(60, 96)(66, 76)(67, 89)(68, 82)(69, 106)(70, 85)(71,
127)(72, 79)(73, 151)(77, 121)(84, 88)(86, 178)(87, 129)(90, 112)(91, 103)(92,
174)(93, 123)(94, 124)(95, 99)(97, 125)(98, 152)(101, 116)(102, 119)(105,
111)(107, 160)(108, 155)(109, 158)(110, 150)(113, 189)(114, 154)(115, 148)(117,
126)(118, 144)(122, 140)(128, 136)(130, 162)(131, 134)(132, 133)(135, 177)(137,
156)(138, 179)(139, 173)(141, 187)(142, 190)(143, 169)(145, 146)(147, 168)(149,
184)(153, 159)(157, 161)(163, 192)(164, 171)(165, 172)(166, 175)(167, 188)(176,
185)(180, 191)(181, 182)(183, 186)(193, 295)(194, 283)(195, 254)(196, 378)(197,
274)(198, 260)(199, 329)(200, 312)(201, 317)(202, 322)(203, 331)(204, 355)(205,
365)(206, 379)(207, 304)(208, 229)(209, 326)(211, 236)(212, 354)(213, 228)(214,
267)(215, 226)(216, 241)(217, 370)(218, 292)(219, 344)(220, 310)(221, 382)(222,
348)(223, 309)(224, 376)(225, 316)(227, 273)(230, 257)(231, 250)(232, 286)(233,
315)(234, 299)(237, 361)(238, 281)(239, 371)(240, 272)(242, 298)(243, 288)(245,
377)(246, 340)(247, 265)(248, 302)(249, 358)(251, 352)(252, 321)(253, 280)(255,
345)(256, 353)(258, 319)(259, 293)(263, 266)(264, 285)(268, 383)(269, 342)(270,
375)(271, 328)(275, 308)(276, 374)(277, 384)(278, 313)(279, 311)(282, 359)(284,
305)(287, 303)(289, 347)(290, 307)(291, 366)(294, 314)(296, 373)(297, 332)(300,
336)(301, 367)(318, 334)(320, 360)(324, 369)(325, 351)(327, 339)(330, 341)(333,
356)(337, 362)(338, 381)(343, 346)(349, 363)(350, 368)(357, 372)(364, 380) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 10)(3, 12)(4, 5)(6, 7)(8, 46)(9, 33)(11, 20)(13, 38)(14, 30)(15, 29)(16,
21)(17, 31)(18, 26)(19, 22)(23, 34)(25, 49)(27, 65)(28, 43)(32, 62)(35, 39)(37,
82)(40, 79)(41, 48)(42, 47)(44, 74)(45, 58)(50, 70)(51, 64)(52, 67)(53, 103)(54,
61)(55, 60)(56, 63)(57, 84)(59, 99)(66, 69)(68, 155)(71, 81)(72, 150)(73,
126)(75, 102)(76, 101)(77, 78)(80, 97)(83, 94)(85, 134)(86, 129)(87, 128)(88,
89)(90, 105)(91, 177)(92, 123)(93, 122)(95, 124)(96, 118)(98, 145)(100,
115)(104, 110)(106, 137)(107, 112)(109, 157)(111, 130)(113, 154)(114, 153)(116,
175)(117, 147)(119, 172)(120, 125)(121, 143)(127, 139)(131, 135)(133, 188)(136,
189)(138, 156)(140, 182)(141, 152)(142, 151)(144, 186)(148, 183)(149, 167)(158,
181)(159, 178)(160, 180)(161, 174)(162, 176)(163, 171)(164, 168)(165, 173)(166,
179)(169, 170)(185, 191)(190, 192)(193, 358)(194, 284)(195, 241)(196, 271)(197,
204)(199, 299)(200, 227)(201, 239)(202, 289)(203, 280)(205, 338)(206, 212)(207,
226)(208, 291)(209, 357)(210, 343)(211, 367)(213, 341)(214, 315)(215, 275)(216,
263)(217, 360)(218, 303)(219, 319)(221, 333)(222, 259)(223, 355)(224, 258)(225,
336)(228, 304)(229, 325)(230, 347)(231, 308)(232, 368)(233, 252)(234, 326)(235,
260)(236, 311)(237, 279)(238, 301)(240, 246)(242, 382)(243, 262)(244, 332)(245,
361)(247, 353)(248, 276)(249, 317)(250, 330)(251, 267)(253, 318)(254, 285)(255,
295)(256, 261)(257, 350)(264, 381)(265, 306)(266, 365)(268, 345)(269, 372)(270,
307)(272, 323)(273, 327)(274, 309)(277, 294)(278, 379)(281, 377)(282, 322)(283,
321)(286, 359)(287, 337)(288, 297)(290, 369)(292, 356)(293, 316)(296, 342)(298,
362)(300, 328)(305, 352)(310, 374)(312, 354)(313, 339)(314, 380)(324, 384)(329,
373)(331, 344)(334, 376)(335, 340)(348, 378)(363, 370)(364, 375)(371, 383)
c: (2, 5)(3, 6)(4, 10)(7, 12)(8, 30)(9, 31)(13, 34)(14, 46)(15, 18)(16, 19)(17,
33)(21, 22)(23, 38)(24, 36)(25, 35)(26, 29)(27, 47)(32, 48)(37, 64)(39, 49)(40,
61)(41, 62)(42, 65)(44, 55)(45, 56)(50, 52)(51, 82)(53, 81)(54, 79)(57, 66)(58,
63)(59, 78)(60, 74)(67, 70)(68, 129)(69, 84)(71, 103)(72, 123)(73, 124)(75,
80)(76, 83)(77, 99)(85, 112)(86, 155)(87, 104)(88, 105)(89, 90)(91, 154)(92,
150)(93, 100)(94, 101)(95, 126)(97, 102)(98, 125)(106, 111)(107, 134)(108,
132)(109, 131)(110, 128)(113, 177)(114, 127)(115, 122)(116, 151)(117, 121)(119,
152)(120, 145)(130, 137)(133, 178)(135, 157)(136, 174)(138, 156)(139, 153)(140,
171)(141, 172)(142, 175)(143, 147)(144, 170)(148, 164)(149, 165)(158, 160)(159,
188)(161, 189)(162, 179)(163, 182)(166, 176)(167, 173)(168, 183)(169, 186)(180,
181)(184, 187)(185, 190)(191, 192)(193, 246)(194, 360)(195, 270)(196, 206)(197,
324)(198, 349)(199, 300)(200, 214)(201, 298)(202, 332)(203, 215)(204, 384)(207,
336)(208, 221)(209, 267)(210, 367)(211, 343)(212, 271)(213, 243)(216, 376)(217,
284)(218, 252)(219, 309)(220, 320)(222, 355)(223, 259)(224, 290)(225, 226)(227,
315)(228, 373)(229, 311)(231, 261)(232, 370)(233, 303)(234, 354)(235, 257)(236,
325)(237, 242)(239, 362)(240, 358)(241, 307)(244, 289)(245, 249)(247, 318)(248,
356)(251, 357)(253, 353)(254, 255)(256, 308)(258, 369)(260, 350)(262, 341)(263,
334)(264, 340)(265, 266)(268, 364)(269, 322)(272, 377)(273, 287)(274, 319)(275,
280)(276, 292)(277, 348)(278, 380)(279, 382)(281, 323)(282, 372)(283, 310)(285,
295)(286, 305)(288, 296)(291, 333)(293, 344)(294, 378)(297, 342)(299, 328)(302,
366)(304, 329)(306, 365)(312, 326)(313, 383)(314, 379)(316, 331)(317, 361)(321,
374)(327, 337)(335, 381)(339, 371)(345, 375)(346, 351)(352, 359)(363, 368)
C4[ 384, 468 ]
384
-1 265 266 365 306
-2 247 205 306 263
-3 377 235 358 230
-4 253 266 376 338
-5 365 334 205 318
-6 257 272 240 230
-7 246 323 347 350
-8 256 247 381 241
-9 269 358 381 305
-10 265 353 216 338
-11 245 235 257 249
-12 193 281 347 260
-13 198 289 238 295
-14 231 253 270 340
-15 275 290 334 335
-16 232 202 335 272
-17 246 282 359 340
-18 224 280 381 263
-19 332 377 370 381
-20 260 317 350 361
-21 289 323 368 340
-22 264 363 244 281
-23 254 332 301 349
-24 254 256 261 285
-25 210 375 269 350
-26 264 203 258 216
-27 297 245 217 338
-28 357 251 295 285
-29 376 215 369 340
-30 308 335 307 318
-31 286 322 335 240
-32 198 201 368 237
-33 264 352 193 372
-34 244 238 349 285
-35 322 345 367 260
-36 231 308 255 295
-37 275 345 193 250
-38 198 255 202 301
-39 211 235 268 282
-40 224 246 324 226
-41 370 349 382 362
-42 194 205 317 296
-43 209 254 255 267
-44 319 331 241 285
-45 305 229 339 350
-46 264 353 195 261
-47 342 249 338 284
-48 242 363 298 349
-49 364 343 257 372
-50 210 342 368 270
-51 330 364 203 240
-52 297 363 367 195
-53 346 357 380 230
-54 204 358 369 336
-55 316 295 274 307
-56 286 311 260 371
-57 243 320 365 237
-58 352 257 313 325
-59 345 214 326 195
-60 309 255 270 293
-61 290 225 193 197
-62 198 232 279 239
-63 235 236 359 383
-64 375 246 280 250
-65 288 205 360 361
-66 220 242 213 306
-67 211 288 370 241
-68 341 226 249 383
-69 220 341 265 382
-70 232 343 296 307
-71 267 379 347 351
-72 319 277 304 272
-73 300 334 218 339
-74 254 344 195 219
-75 368 327 284 208
-76 298 310 228 306
-77 364 354 227 307
-78 375 200 312 270
-79 258 207 240 384
-80 363 221 337 217
-81 278 251 230 351
-82 330 268 215 358
-83 365 201 283 373
-84 320 266 279 262
-85 286 290 346 373
-86 243 336 339 361
-87 278 377 316 262
-88 311 360 262 263
-89 243 236 216 217
-90 376 213 325 284
-91 343 289 326 294
-92 309 378 281 373
-93 199 222 245 197
-94 266 321 239 329
-95 233 299 216 383
-96 375 223 345 259
-97 287 333 370 360
-98 220 233 248 284
-99 234 268 315 241
-100 300 355 324 249
-101 374 265 304 362
-102 232 291 194 273
-103 209 346 314 347
-104 341 331 380 272
-105 341 334 194 229
-106 330 221 310 247
-107 352 258 304 351
-108 201 304 228 239
-109 211 300 372 197
-110 344 213 323 314
-111 330 283 208 318
-112 224 228 305 351
-113 332 354 367 348
-114 200 244 236 196
-115 223 317 328 384
-116 276 247 337 207
-117 287 278 224 271
-118 364 222 355 268
-119 286 366 227 283
-120 320 292 360 218
-121 212 290 380 273
-122 299 204 259 361
-123 377 348 274 329
-124 199 371 252 263
-125 320 356 303 217
-126 376 313 303 328
-127 289 214 325 206
-128 243 379 281 293
-129 245 225 313 262
-130 253 321 291 250
-131 199 343 324 282
-132 298 329 362 373
-133 242 199 337 296
-134 346 369 359 329
-135 210 299 322 384
-136 288 259 238 206
-137 374 353 333 250
-138 308 248 292 261
-139 212 202 315 229
-140 234 355 237 293
-141 352 374 214 302
-142 253 356 225 273
-143 314 369 206 327
-144 204 380 348 383
-145 220 276 194 252
-146 374 310 321 283
-147 258 379 337 196
-148 309 277 201 271
-149 333 326 218 372
-150 323 228 294 219
-151 292 336 327 318
-152 310 302 315 305
-153 332 311 227 271
-154 211 244 312 378
-155 213 371 207 317
-156 231 276 256 356
-157 367 269 204 328
-158 236 357 336 274
-159 297 279 273 328
-160 319 325 207 251
-161 342 355 301 271
-162 231 366 280 252
-163 331 312 259 382
-164 298 212 348 219
-165 312 291 282 252
-166 256 302 215 303
-167 221 234 269 303
-168 319 378 206 362
-169 324 379 294 339
-170 277 278 313 384
-171 242 222 354 344
-172 200 321 366 359
-173 233 354 322 208
-174 223 238 196 296
-175 287 353 226 248
-176 308 233 366 203
-177 210 277 234 202
-178 288 300 237 327
-179 275 302 261 218
-180 267 226 229 219
-181 209 309 311 225
-182 223 279 326 316
-183 239 294 196 274
-184 209 356 357 292
-185 275 331 291 315
-186 378 314 371 197
-187 276 267 248 251
-188 287 342 299 382
-189 297 222 212 301
-190 333 280 227 316
-191 344 214 215 208
-192 221 200 203 293
-193 33 12 37 61
-194 145 102 105 42
-195 46 59 52 74
-196 114 147 183 174
-197 93 61 109 186
-198 13 38 62 32
-199 133 124 93 131
-200 78 114 192 172
-201 148 83 108 32
-202 177 16 38 139
-203 176 26 192 51
-204 122 144 157 54
-205 2 5 42 65
-206 143 168 136 127
-207 155 79 116 160
-208 111 191 173 75
-209 103 181 184 43
-210 177 25 135 50
-211 154 67 39 109
-212 121 189 139 164
-213 66 110 155 90
-214 59 191 127 141
-215 166 191 82 29
-216 89 26 95 10
-217 89 80 125 27
-218 179 149 73 120
-219 180 150 74 164
-220 66 145 69 98
-221 167 80 192 106
-222 189 93 171 118
-223 115 182 96 174
-224 112 18 40 117
-225 181 61 129 142
-226 68 180 40 175
-227 77 190 119 153
-228 112 150 108 76
-229 45 180 105 139
-230 3 81 6 53
-231 156 14 36 162
-232 102 70 16 62
-233 176 95 173 98
-234 99 177 167 140
-235 11 3 39 63
-236 89 114 158 63
-237 57 178 140 32
-238 34 13 136 174
-239 94 62 183 108
-240 79 6 51 31
-241 44 99 67 8
-242 66 133 48 171
-243 89 57 128 86
-244 22 154 34 114
-245 11 27 93 129
-246 17 7 40 64
-247 2 116 106 8
-248 187 138 98 175
-249 11 100 68 47
-250 37 137 64 130
-251 187 81 28 160
-252 165 145 124 162
-253 14 4 130 142
-254 23 24 74 43
-255 36 38 60 43
-256 166 24 156 8
-257 11 58 49 6
-258 79 26 147 107
-259 122 136 96 163
-260 12 56 35 20
-261 24 46 179 138
-262 88 84 129 87
-263 88 2 124 18
-264 22 33 46 26
-265 1 101 69 10
-266 1 4 94 84
-267 187 180 71 43
-268 99 82 39 118
-269 167 25 157 9
-270 78 14 60 50
-271 148 117 161 153
-272 16 104 6 72
-273 121 102 159 142
-274 55 123 158 183
-275 179 15 37 185
-276 187 145 156 116
-277 177 148 170 72
-278 81 170 117 87
-279 159 182 62 84
-280 190 18 162 64
-281 22 12 92 128
-282 165 17 39 131
-283 111 146 83 119
-284 90 47 75 98
-285 44 34 24 28
-286 56 85 31 119
-287 188 117 97 175
-288 67 178 136 65
-289 13 91 127 21
-290 121 15 61 85
-291 165 102 130 185
-292 138 151 184 120
-293 60 192 128 140
-294 91 169 150 183
-295 55 13 36 28
-296 133 70 42 174
-297 189 27 159 52
-298 132 48 76 164
-299 122 188 135 95
-300 100 178 73 109
-301 23 189 38 161
-302 166 179 141 152
-303 166 167 125 126
-304 101 72 107 108
-305 45 112 9 152
-306 66 1 2 76
-307 55 77 70 30
-308 176 36 138 30
-309 92 60 148 181
-310 146 106 152 76
-311 88 56 181 153
-312 154 165 78 163
-313 58 126 170 129
-314 110 143 103 186
-315 99 139 152 185
-316 55 190 182 87
-317 155 115 20 42
-318 111 5 30 151
-319 44 168 72 160
-320 57 125 84 120
-321 146 94 172 130
-322 35 135 173 31
-323 110 7 150 21
-324 100 169 40 131
-325 90 58 127 160
-326 91 59 149 182
-327 143 178 151 75
-328 157 115 126 159
-329 132 123 134 94
-330 111 82 51 106
-331 44 104 163 185
-332 23 113 19 153
-333 190 137 149 97
-334 15 5 105 73
-335 15 16 30 31
-336 158 151 86 54
-337 133 80 147 116
-338 47 4 27 10
-339 45 169 73 86
-340 14 17 29 21
-341 68 69 104 105
-342 188 47 50 161
-343 91 70 49 131
-344 110 191 171 74
-345 35 37 59 96
-346 134 103 85 53
-347 12 103 71 7
-348 144 123 113 164
-349 23 34 48 41
-350 45 25 7 20
-351 112 81 71 107
-352 33 58 107 141
-353 46 137 10 175
-354 77 113 171 173
-355 100 161 118 140
-356 156 125 184 142
-357 158 28 184 53
-358 3 82 9 54
-359 134 17 172 63
-360 88 97 65 120
-361 122 20 86 65
-362 132 101 168 41
-363 22 80 48 52
-364 77 49 51 118
-365 1 57 5 83
-366 176 172 162 119
-367 35 113 157 52
-368 50 75 21 32
-369 143 134 29 54
-370 67 19 41 97
-371 56 155 124 186
-372 33 49 149 109
-373 132 92 83 85
-374 101 146 137 141
-375 78 25 96 64
-376 90 4 126 29
-377 123 3 19 87
-378 154 168 92 186
-379 147 169 71 128
-380 121 144 104 53
-381 18 8 19 9
-382 188 69 41 163
-383 144 68 95 63
-384 79 135 115 170
0