C4graphGraph forms for C4 [ 384, 469 ] = BGCG(UG(ATD[192,16]);K1;{2,11})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 469 ] = BGCG(UG(ATD[192,16]);K1;{2,11}).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {192, 210}, {192, 228}, {192, 236}, {135, 199}, {150, 215}, {190, 255}, {138, 200}, {148, 214}, {128, 195}, {155, 216}, {130, 197}, {153, 222}, {134, 206}, {141, 197}, {140, 198}, {188, 246}, {134, 202}, {185, 244}, {187, 246}, {189, 243}, {133, 202}, {181, 250}, {148, 219}, {147, 194}, {157, 204}, {157, 206}, {172, 255}, {147, 198}, {169, 255}, {143, 216}, {159, 200}, {154, 205}, {169, 241}, {151, 206}, {155, 194}, {131, 217}, {132, 222}, {175, 244}, {160, 253}, {156, 194}, {137, 214}, {168, 200}, {191, 223}, {138, 233}, {173, 201}, {151, 242}, {135, 225}, {165, 195}, {136, 239}, {162, 197}, {161, 198}, {164, 204}, {177, 216}, {187, 210}, {140, 231}, {167, 204}, {165, 206}, {133, 233}, {158, 242}, {137, 229}, {174, 195}, {182, 216}, {134, 233}, {151, 231}, {184, 200}, {179, 195}, {140, 253}, {171, 218}, {143, 253}, {176, 194}, {168, 218}, {147, 231}, {174, 218}, {179, 198}, {188, 201}, {153, 239}, {191, 201}, {144, 233}, {158, 231}, {148, 237}, {177, 204}, {145, 239}, {72, 201}, {127, 253}, {69, 193}, {105, 237}, {124, 248}, {100, 226}, {113, 247}, {115, 245}, {72, 207}, {82, 213}, {114, 245}, {89, 208}, {71, 205}, {86, 221}, {124, 247}, {123, 245}, {103, 232}, {125, 242}, {115, 225}, {78, 221}, {112, 227}, {70, 208}, {72, 223}, {90, 205}, {114, 229}, {97, 248}, {74, 209}, {77, 208}, {90, 199}, {101, 251}, {108, 242}, {122, 229}, {126, 225}, {74, 234}, {79, 238}, {71, 229}, {104, 202}, {116, 215}, {88, 252}, {64, 230}, {83, 245}, {125, 219}, {87, 240}, {109, 202}, {105, 193}, {127, 215}, {66, 235}, {116, 222}, {125, 215}, {65, 234}, {83, 248}, {108, 199}, {104, 197}, {106, 199}, {116, 217}, {76, 226}, {78, 224}, {119, 217}, {81, 254}, {116, 219}, {77, 252}, {109, 220}, {69, 247}, {79, 252}, {92, 239}, {106, 217}, {101, 209}, {104, 220}, {106, 222}, {95, 234}, {88, 238}, {96, 214}, {100, 211}, {121, 193}, {81, 232}, {91, 225}, {102, 220}, {110, 212}, {118, 205}, {66, 254}, {70, 251}, {107, 214}, {98, 220}, {68, 251}, {19, 211}, {44, 236}, {43, 235}, {10, 203}, {29, 223}, {12, 207}, {30, 221}, {38, 226}, {13, 203}, {28, 212}, {32, 232}, {39, 237}, {61, 247}, {51, 249}, {43, 224}, {49, 250}, {46, 226}, {60, 240}, {48, 252}, {47, 227}, {28, 209}, {54, 251}, {41, 230}, {33, 241}, {58, 234}, {22, 196}, {33, 243}, {51, 224}, {62, 237}, {7, 210}, {37, 240}, {18, 196}, {52, 236}, {15, 212}, {37, 254}, {14, 210}, {18, 207}, {51, 238}, {45, 240}, {4, 218}, {53, 235}, {32, 254}, {39, 248}, {55, 232}, {48, 208}, {53, 213}, {6, 228}, {41, 203}, {14, 236}, {21, 246}, {54, 213}, {48, 211}, {62, 219}, {31, 249}, {54, 209}, {25, 241}, {16, 250}, {33, 203}, {13, 230}, {18, 249}, {20, 250}, {42, 196}, {22, 249}, {60, 211}, {3, 243}, {5, 244}, {31, 238}, {22, 228}, {19, 224}, {24, 235}, {49, 196}, {2, 244}, {41, 223}, {9, 241}, {45, 213}, {6, 255}, {10, 243}, {59, 193}, {38, 221}, {47, 212}, {10, 246}, {27, 230}, {50, 207}, {30, 227}, {26, 228}, {29, 227}, {13, 269}, {69, 324}, {129, 384}, {108, 366}, {75, 328}, {53, 305}, {106, 366}, {75, 334}, {122, 383}, {83, 341}, {92, 346}, {25, 286}, {40, 303}, {37, 290}, {26, 285}, {121, 382}, {135, 384}, {12, 260}, {81, 345}, {21, 285}, {73, 320}, {87, 350}, {99, 361}, {107, 353}, {21, 286}, {86, 349}, {113, 378}, {139, 384}, {8, 260}, {120, 372}, {30, 275}, {76, 321}, {99, 366}, {61, 307}, {37, 298}, {79, 320}, {45, 290}, {42, 293}, {100, 363}, {101, 362}, {52, 293}, {69, 340}, {59, 297}, {60, 302}, {117, 359}, {58, 297}, {77, 350}, {65, 338}, {119, 356}, {84, 321}, {29, 267}, {101, 371}, {10, 285}, {117, 354}, {2, 282}, {82, 330}, {55, 302}, {78, 343}, {90, 323}, {67, 345}, {73, 339}, {5, 286}, {45, 305}, {64, 348}, {111, 371}, {40, 309}, {113, 364}, {48, 302}, {86, 328}, {97, 383}, {55, 279}, {6, 295}, {41, 267}, {70, 356}, {123, 345}, {17, 306}, {70, 354}, {3, 294}, {79, 362}, {127, 346}, {43, 269}, {88, 382}, {68, 354}, {7, 288}, {114, 341}, {31, 311}, {35, 267}, {32, 264}, {125, 341}, {13, 295}, {73, 355}, {58, 272}, {40, 260}, {76, 352}, {111, 323}, {94, 371}, {66, 364}, {93, 371}, {121, 343}, {24, 311}, {50, 285}, {27, 298}, {23, 293}, {112, 322}, {118, 324}, {35, 272}, {72, 379}, {52, 263}, {95, 364}, {78, 378}, {107, 351}, {75, 381}, {93, 363}, {98, 340}, {124, 330}, {36, 275}, {93, 362}, {100, 339}, {105, 350}, {1, 313}, {20, 300}, {124, 324}, {12, 309}, {82, 363}, {108, 341}, {126, 324}, {3, 312}, {92, 359}, {1, 317}, {58, 262}, {47, 275}, {14, 306}, {9, 309}, {28, 289}, {89, 356}, {60, 257}, {105, 340}, {1, 319}, {57, 263}, {51, 269}, {15, 305}, {11, 309}, {6, 312}, {2, 317}, {74, 373}, {57, 262}, {8, 311}, {19, 339}, {127, 319}, {111, 302}, {42, 360}, {80, 274}, {94, 284}, {95, 284}, {19, 343}, {84, 272}, {3, 326}, {59, 382}, {56, 381}, {50, 375}, {35, 357}, {82, 276}, {64, 262}, {34, 357}, {63, 376}, {61, 378}, {110, 297}, {27, 339}, {96, 296}, {93, 276}, {7, 333}, {46, 357}, {88, 275}, {94, 277}, {44, 352}, {74, 262}, {34, 367}, {38, 363}, {95, 274}, {46, 352}, {73, 263}, {80, 287}, {91, 276}, {110, 289}, {107, 315}, {1, 336}, {89, 264}, {85, 260}, {9, 344}, {97, 304}, {15, 349}, {85, 263}, {16, 322}, {123, 296}, {4, 336}, {90, 270}, {52, 352}, {4, 337}, {63, 362}, {44, 377}, {8, 349}, {99, 310}, {30, 328}, {87, 257}, {68, 274}, {46, 376}, {43, 381}, {42, 380}, {25, 334}, {89, 270}, {112, 295}, {14, 342}, {80, 264}, {47, 375}, {98, 314}, {17, 328}, {62, 359}, {53, 364}, {49, 360}, {98, 315}, {11, 337}, {36, 382}, {23, 333}, {26, 321}, {68, 287}, {35, 376}, {94, 261}, {36, 376}, {62, 354}, {38, 378}, {102, 314}, {16, 333}, {65, 284}, {80, 270}, {29, 322}, {84, 267}, {71, 280}, {25, 377}, {117, 277}, {120, 280}, {91, 314}, {59, 345}, {85, 311}, {11, 360}, {83, 304}, {56, 347}, {102, 261}, {113, 274}, {2, 358}, {56, 348}, {18, 375}, {57, 348}, {24, 381}, {114, 279}, {122, 287}, {20, 370}, {86, 305}, {115, 276}, {66, 298}, {91, 307}, {28, 373}, {31, 373}, {64, 298}, {102, 268}, {111, 261}, {23, 380}, {67, 296}, {21, 377}, {77, 289}, {92, 304}, {117, 281}, {11, 358}, {63, 338}, {39, 330}, {24, 373}, {122, 279}, {76, 290}, {9, 358}, {61, 338}, {33, 334}, {20, 379}, {109, 258}, {67, 307}, {85, 293}, {103, 279}, {7, 374}, {71, 310}, {44, 349}, {8, 377}, {104, 281}, {121, 264}, {65, 307}, {103, 277}, {115, 257}, {119, 261}, {120, 266}, {40, 347}, {50, 321}, {49, 322}, {17, 357}, {55, 323}, {118, 258}, {22, 355}, {96, 277}, {4, 370}, {87, 289}, {84, 290}, {56, 334}, {36, 338}, {5, 370}, {32, 343}, {12, 379}, {120, 271}, {15, 375}, {81, 297}, {27, 355}, {23, 367}, {99, 283}, {118, 270}, {26, 355}, {75, 306}, {67, 314}, {57, 320}, {39, 350}, {34, 347}, {96, 281}, {123, 257}, {103, 284}, {109, 278}, {119, 268}, {54, 330}, {126, 258}, {112, 269}, {5, 379}, {34, 348}, {17, 367}, {97, 287}, {110, 272}, {16, 367}, {63, 320}, {141, 271}, {188, 318}, {186, 312}, {154, 280}, {163, 288}, {136, 268}, {164, 288}, {146, 278}, {143, 266}, {187, 318}, {184, 317}, {170, 303}, {168, 301}, {171, 301}, {163, 299}, {174, 294}, {180, 319}, {183, 316}, {168, 292}, {190, 306}, {129, 268}, {179, 318}, {173, 288}, {166, 299}, {149, 283}, {152, 278}, {146, 258}, {191, 303}, {155, 266}, {178, 291}, {189, 303}, {130, 273}, {176, 291}, {141, 281}, {162, 310}, {143, 282}, {179, 294}, {140, 282}, {180, 291}, {181, 300}, {190, 295}, {128, 283}, {183, 300}, {167, 316}, {166, 317}, {145, 266}, {132, 280}, {186, 294}, {146, 271}, {182, 299}, {145, 271}, {178, 300}, {142, 273}, {171, 308}, {166, 313}, {161, 318}, {153, 313}, {163, 259}, {156, 316}, {154, 315}, {150, 308}, {144, 308}, {173, 265}, {164, 256}, {142, 299}, {130, 292}, {185, 286}, {145, 313}, {132, 301}, {170, 259}, {150, 319}, {152, 308}, {142, 291}, {138, 292}, {149, 292}, {177, 256}, {162, 273}, {153, 301}, {175, 282}, {188, 265}, {182, 259}, {181, 256}, {160, 278}, {166, 273}, {131, 315}, {176, 265}, {185, 256}, {139, 304}, {178, 265}, {128, 316}, {148, 296}, {165, 283}, {189, 259}, {137, 310}, {139, 331}, {142, 332}, {135, 323}, {172, 360}, {154, 351}, {183, 369}, {186, 380}, {152, 351}, {133, 332}, {150, 351}, {129, 331}, {162, 361}, {134, 331}, {187, 374}, {138, 327}, {159, 335}, {139, 346}, {158, 332}, {161, 370}, {167, 372}, {165, 368}, {170, 380}, {131, 340}, {144, 327}, {157, 325}, {169, 369}, {144, 329}, {175, 374}, {156, 326}, {151, 331}, {152, 325}, {172, 369}, {184, 358}, {175, 368}, {173, 333}, {167, 325}, {171, 329}, {164, 327}, {181, 342}, {133, 353}, {191, 347}, {180, 336}, {163, 327}, {136, 365}, {170, 335}, {160, 325}, {131, 356}, {137, 353}, {190, 342}, {159, 374}, {177, 344}, {129, 365}, {146, 383}, {157, 368}, {156, 369}, {182, 344}, {130, 365}, {185, 342}, {159, 368}, {136, 359}, {132, 372}, {161, 336}, {169, 344}, {141, 383}, {155, 361}, {128, 372}, {186, 335}, {176, 326}, {184, 335}, {149, 365}, {192, 312}, {180, 332}, {147, 361}, {160, 346}, {149, 366}, {189, 326}, {178, 329}, {172, 337}, {126, 384}, {183, 329}, {158, 353}, {174, 337} }>;

(II) A more general form is to represent the graph as the orbit of {192, 210} under the group generated by the following permutations:

a: (2, 153)(3, 109)(4, 127)(5, 116)(6, 126)(7, 71)(8, 70)(9, 136)(10, 98)(11, 92)(12, 62)(13, 91)(14, 90)(15, 77)(16, 114)(17, 55)(18, 39)(19, 38)(20, 125)(21, 131)(22, 124)(23, 122)(24, 101)(25, 119)(26, 69)(27, 61)(29, 123)(30, 60)(31, 54)(32, 46)(33, 102)(34, 103)(35, 81)(36, 37)(40, 117)(41, 67)(42, 97)(43, 93)(44, 89)(45, 88)(47, 87)(48, 86)(49, 83)(50, 105)(51, 82)(52, 80)(53, 79)(56, 94)(57, 95)(59, 84)(63, 66)(64, 65)(68, 85)(72, 148)(73, 113)(75, 111)(76, 121)(78, 100)(96, 191)(99, 164)(104, 189)(106, 185)(107, 188)(108, 181)(112, 115)(118, 192)(120, 159)(128, 157)(129, 169)(130, 182)(132, 175)(133, 176)(134, 156)(135, 190)(137, 173)(138, 155)(139, 172)(140, 171)(141, 170)(143, 168)(144, 147)(145, 184)(146, 186)(149, 177)(150, 161)(151, 183)(152, 179)(154, 187)(158, 178)(160, 174)(162, 163)(165, 167)(193, 321)(194, 233)(195, 325)(196, 248)(197, 259)(198, 308)(199, 342)(200, 266)(201, 214)(202, 326)(203, 314)(204, 283)(205, 210)(206, 316)(207, 237)(208, 349)(209, 373)(211, 221)(212, 289)(213, 238)(215, 370)(216, 292)(217, 286)(218, 253)(219, 379)(220, 243)(222, 244)(223, 296)(224, 363)(225, 295)(226, 343)(227, 257)(228, 324)(229, 333)(230, 307)(231, 329)(232, 357)(234, 262)(235, 362)(236, 270)(239, 358)(240, 275)(241, 268)(242, 300)(245, 322)(246, 315)(247, 355)(249, 330)(250, 341)(251, 311)(252, 305)(254, 376)(255, 384)(256, 366)(258, 312)(260, 354)(261, 334)(263, 274)(264, 352)(265, 353)(267, 345)(269, 276)(271, 335)(272, 297)(273, 299)(277, 347)(278, 294)(279, 367)(280, 374)(281, 303)(282, 301)(284, 348)(285, 340)(287, 293)(288, 310)(290, 382)(291, 332)(298, 338)(302, 328)(304, 360)(306, 323)(309, 359)(313, 317)(318, 351)(319, 336)(320, 364)(327, 361)(331, 369)(337, 346)(339, 378)(344, 365)(350, 375)(356, 377)(368, 372)(371, 381)(380, 383)
b: (2, 127)(3, 71)(4, 153)(5, 92)(6, 90)(7, 109)(8, 39)(9, 125)(10, 122)(11, 116)(12, 62)(13, 55)(14, 126)(15, 54)(16, 102)(17, 91)(18, 70)(20, 136)(21, 97)(22, 89)(23, 98)(24, 87)(25, 83)(26, 80)(27, 32)(29, 94)(30, 93)(31, 77)(33, 114)(34, 67)(35, 65)(36, 63)(37, 66)(40, 148)(41, 103)(42, 131)(43, 60)(44, 124)(45, 53)(46, 61)(47, 101)(48, 51)(49, 119)(50, 68)(52, 69)(56, 123)(57, 59)(64, 81)(72, 117)(73, 121)(74, 110)(75, 115)(76, 113)(78, 100)(79, 88)(82, 86)(84, 95)(85, 105)(96, 191)(99, 156)(104, 173)(106, 172)(107, 170)(108, 169)(111, 112)(118, 192)(120, 179)(129, 181)(130, 178)(132, 174)(133, 163)(134, 164)(135, 190)(137, 189)(138, 144)(139, 185)(140, 143)(141, 188)(145, 161)(146, 187)(147, 155)(149, 183)(150, 184)(151, 177)(152, 159)(154, 186)(158, 182)(160, 175)(162, 176)(165, 167)(166, 180)(168, 171)(193, 263)(194, 361)(195, 372)(196, 356)(197, 265)(198, 266)(199, 255)(200, 308)(201, 281)(202, 288)(203, 279)(204, 206)(205, 312)(207, 354)(208, 249)(209, 212)(210, 258)(211, 224)(213, 305)(214, 303)(215, 358)(216, 231)(217, 360)(218, 301)(219, 309)(220, 333)(221, 363)(222, 337)(223, 277)(225, 306)(226, 378)(227, 371)(228, 270)(229, 243)(230, 232)(233, 327)(234, 272)(235, 240)(236, 324)(237, 260)(238, 252)(239, 370)(241, 341)(242, 344)(244, 346)(245, 334)(246, 383)(247, 352)(248, 377)(250, 268)(251, 375)(253, 282)(254, 298)(256, 331)(257, 381)(259, 353)(261, 322)(262, 297)(264, 355)(267, 284)(269, 302)(271, 318)(273, 291)(274, 321)(275, 362)(276, 328)(278, 374)(280, 294)(283, 316)(285, 287)(286, 304)(289, 373)(290, 364)(292, 329)(293, 340)(295, 323)(296, 347)(299, 332)(300, 365)(307, 357)(310, 326)(311, 350)(313, 336)(314, 367)(315, 380)(317, 319)(320, 382)(325, 368)(330, 349)(335, 351)(338, 376)(339, 343)(342, 384)(345, 348)(359, 379)(366, 369)
c: (1, 2, 143, 177, 167, 183, 171, 4)(3, 133, 186, 158, 170, 151, 189, 134)(5, 145, 185, 120, 181, 132, 20, 153)(6, 107, 42, 125, 40, 139, 33, 109)(7, 99, 173, 149, 188, 130, 187, 162)(8, 97, 75, 118, 112, 131, 18, 62)(9, 160, 169, 152, 172, 150, 11, 127)(10, 104, 192, 137, 23, 108, 191, 129)(12, 92, 25, 146, 190, 154, 49, 116)(13, 98, 22, 148, 85, 83, 56, 126)(14, 71, 16, 106, 72, 136, 21, 141)(15, 68, 86, 80, 30, 89, 47, 70)(17, 90, 29, 119, 50, 117, 44, 122)(19, 59, 79, 87, 74, 82, 66, 61)(24, 124, 43, 69, 51, 105, 31, 39)(26, 96, 52, 114, 34, 135, 41, 102)(27, 67, 73, 123, 57, 115, 64, 91)(28, 54, 53, 113, 78, 121, 88, 77)(32, 36, 48, 110, 101, 45, 95, 38)(35, 111, 84, 94, 76, 103, 46, 55)(37, 65, 100, 81, 63, 60, 58, 93)(128, 178, 168, 161, 166, 175, 155, 164)(138, 179, 142, 159, 147, 163, 165, 176)(140, 182, 157, 156, 144, 174, 180, 184)(193, 238, 350, 373, 330, 235, 247, 224)(194, 327, 195, 291, 200, 198, 299, 368)(196, 219, 260, 304, 334, 258, 295, 315)(197, 210, 310, 333, 366, 201, 365, 246)(199, 223, 268, 285, 281, 236, 229, 367)(202, 312, 353, 380, 242, 303, 331, 243)(203, 220, 228, 214, 293, 341, 347, 384)(204, 316, 329, 218, 336, 317, 282, 216)(205, 322, 217, 207, 359, 377, 383, 306)(206, 326, 233, 294, 332, 335, 231, 259)(208, 212, 251, 305, 274, 221, 264, 275)(209, 213, 364, 378, 343, 382, 252, 289)(211, 297, 362, 240, 234, 363, 254, 338)(215, 309, 346, 241, 278, 255, 351, 360)(222, 379, 239, 286, 271, 342, 280, 250)(225, 230, 314, 355, 296, 263, 245, 348)(226, 232, 376, 302, 272, 371, 290, 284)(227, 356, 375, 354, 349, 287, 328, 270)(237, 311, 248, 381, 324, 269, 340, 249)(244, 266, 256, 372, 300, 301, 370, 313)(253, 344, 325, 369, 308, 337, 319, 358)(257, 262, 276, 298, 307, 339, 345, 320)(261, 321, 277, 352, 279, 357, 323, 267)(265, 292, 318, 273, 374, 361, 288, 283)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 469 ]
384
-1 319 313 336 317
-2 244 358 282 317
-3 243 312 326 294
-4 336 337 370 218
-5 286 244 379 370
-6 255 312 228 295
-7 374 210 288 333
-8 311 377 260 349
-9 309 344 358 241
-10 243 246 203 285
-11 309 358 337 360
-12 309 379 260 207
-13 203 269 295 230
-14 210 342 236 306
-15 375 212 305 349
-16 322 333 367 250
-17 367 357 306 328
-18 375 249 196 207
-19 211 343 224 339
-20 300 379 370 250
-21 286 377 246 285
-22 355 249 228 196
-23 333 367 380 293
-24 311 235 381 373
-25 286 377 334 241
-26 321 355 228 285
-27 298 355 339 230
-28 209 212 289 373
-29 223 267 322 227
-30 275 221 227 328
-31 311 238 249 373
-32 264 232 254 343
-33 243 334 203 241
-34 367 357 347 348
-35 376 267 357 272
-36 275 376 338 382
-37 254 298 290 240
-38 363 221 378 226
-39 330 237 248 350
-40 309 303 347 260
-41 223 267 203 230
-42 380 293 360 196
-43 224 235 269 381
-44 352 377 236 349
-45 213 290 305 240
-46 352 376 357 226
-47 275 375 212 227
-48 211 302 208 252
-49 322 250 360 196
-50 375 321 207 285
-51 224 269 238 249
-52 352 236 293 263
-53 364 213 235 305
-54 209 330 213 251
-55 232 279 323 302
-56 334 347 348 381
-57 320 348 262 263
-58 297 234 272 262
-59 297 345 193 382
-60 211 257 302 240
-61 378 247 338 307
-62 354 237 359 219
-63 320 376 338 362
-64 298 348 262 230
-65 234 338 284 307
-66 254 298 364 235
-67 345 314 296 307
-68 287 354 251 274
-69 247 324 193 340
-70 354 356 251 208
-71 310 280 205 229
-72 201 223 379 207
-73 320 355 339 263
-74 209 234 262 373
-75 334 381 306 328
-76 352 321 290 226
-77 289 350 208 252
-78 221 343 224 378
-79 320 238 252 362
-80 264 287 270 274
-81 297 232 254 345
-82 330 363 276 213
-83 341 245 248 304
-84 321 267 290 272
-85 311 260 293 263
-86 221 305 349 328
-87 289 257 240 350
-88 275 238 382 252
-89 264 356 270 208
-90 199 323 270 205
-91 276 225 314 307
-92 346 304 359 239
-93 363 276 371 362
-94 277 261 371 284
-95 364 234 284 274
-96 277 214 281 296
-97 287 248 304 383
-98 220 314 315 340
-99 310 366 283 361
-100 363 211 226 339
-101 209 371 251 362
-102 220 268 314 261
-103 232 277 279 284
-104 220 202 281 197
-105 193 237 350 340
-106 199 222 366 217
-107 353 214 315 351
-108 242 341 199 366
-109 220 278 202 258
-110 297 212 289 272
-111 323 302 261 371
-112 322 269 227 295
-113 364 378 247 274
-114 341 245 279 229
-115 276 245 257 225
-116 222 215 217 219
-117 277 354 281 359
-118 258 324 270 205
-119 268 356 217 261
-120 266 280 271 372
-121 264 343 193 382
-122 287 279 229 383
-123 245 257 345 296
-124 330 247 324 248
-125 242 341 215 219
-126 225 258 324 384
-127 253 319 346 215
-128 195 283 316 372
-129 331 365 268 384
-130 365 292 273 197
-131 356 315 217 340
-132 222 301 280 372
-133 353 233 332 202
-134 331 233 202 206
-135 199 323 225 384
-136 365 268 359 239
-137 353 310 214 229
-138 200 233 292 327
-139 331 346 304 384
-140 198 231 253 282
-141 281 271 383 197
-142 299 332 291 273
-143 253 266 216 282
-144 308 233 327 329
-145 266 313 271 239
-146 278 258 271 383
-147 198 231 194 361
-148 214 237 219 296
-149 365 366 292 283
-150 308 319 215 351
-151 231 242 331 206
-152 308 278 325 351
-153 222 301 313 239
-154 280 205 315 351
-155 266 194 216 361
-156 369 194 326 316
-157 368 204 325 206
-158 231 242 353 332
-159 374 200 335 368
-160 253 278 346 325
-161 198 336 370 318
-162 310 273 361 197
-163 288 299 259 327
-164 288 256 204 327
-165 368 195 206 283
-166 299 313 273 317
-167 204 325 316 372
-168 200 301 292 218
-169 255 344 369 241
-170 335 259 303 380
-171 308 301 218 329
-172 255 369 337 360
-173 265 288 201 333
-174 337 195 294 218
-175 374 244 368 282
-176 265 291 194 326
-177 256 344 204 216
-178 265 300 291 329
-179 198 195 294 318
-180 319 332 291 336
-181 342 256 300 250
-182 299 344 259 216
-183 300 369 316 329
-184 200 335 358 317
-185 286 342 244 256
-186 312 335 380 294
-187 374 210 246 318
-188 265 201 246 318
-189 243 259 303 326
-190 342 255 295 306
-191 201 223 303 347
-192 210 312 236 228
-193 121 69 59 105
-194 176 155 156 147
-195 165 179 128 174
-196 22 49 18 42
-197 104 162 130 141
-198 179 147 161 140
-199 90 135 106 108
-200 168 159 138 184
-201 188 191 72 173
-202 133 134 104 109
-203 33 13 41 10
-204 177 167 157 164
-205 154 90 71 118
-206 165 134 157 151
-207 12 50 72 18
-208 77 89 48 70
-209 101 28 74 54
-210 187 14 192 7
-211 100 48 60 19
-212 110 47 15 28
-213 45 82 53 54
-214 137 148 96 107
-215 125 116 127 150
-216 143 155 177 182
-217 116 106 119 131
-218 168 4 171 174
-219 125 148 116 62
-220 102 104 98 109
-221 78 38 30 86
-222 132 116 106 153
-223 191 72 29 41
-224 78 51 19 43
-225 91 135 115 126
-226 100 46 38 76
-227 112 47 29 30
-228 22 26 192 6
-229 122 114 71 137
-230 13 27 41 64
-231 147 158 140 151
-232 55 81 103 32
-233 133 144 134 138
-234 58 95 74 65
-235 66 24 53 43
-236 44 14 192 52
-237 148 39 105 62
-238 88 79 51 31
-239 145 92 136 153
-240 45 37 60 87
-241 33 25 169 9
-242 125 158 151 108
-243 33 189 3 10
-244 2 5 185 175
-245 123 114 115 83
-246 187 188 10 21
-247 69 113 124 61
-248 124 39 83 97
-249 22 18 51 31
-250 16 49 181 20
-251 68 101 70 54
-252 77 88 79 48
-253 143 127 160 140
-254 66 37 81 32
-255 190 169 6 172
-256 177 181 185 164
-257 123 60 115 87
-258 146 126 118 109
-259 189 170 182 163
-260 12 40 8 85
-261 111 102 94 119
-262 57 58 74 64
-263 57 73 52 85
-264 121 89 80 32
-265 176 188 178 173
-266 143 155 145 120
-267 35 29 84 41
-268 102 136 129 119
-269 13 112 51 43
-270 89 90 80 118
-271 145 146 141 120
-272 110 35 58 84
-273 166 162 130 142
-274 68 80 113 95
-275 88 36 47 30
-276 91 82 93 115
-277 103 94 117 96
-278 146 160 152 109
-279 55 122 103 114
-280 132 154 71 120
-281 104 117 96 141
-282 143 2 140 175
-283 99 165 149 128
-284 103 94 95 65
-285 26 50 10 21
-286 25 5 185 21
-287 122 68 80 97
-288 7 173 163 164
-289 77 110 28 87
-290 45 37 84 76
-291 176 178 180 142
-292 168 138 149 130
-293 23 52 85 42
-294 3 179 174 186
-295 13 112 190 6
-296 67 123 148 96
-297 110 58 59 81
-298 66 37 27 64
-299 166 182 163 142
-300 178 181 183 20
-301 132 168 171 153
-302 55 111 48 60
-303 189 191 170 40
-304 92 83 139 97
-305 45 15 53 86
-306 14 190 17 75
-307 67 91 61 65
-308 144 171 150 152
-309 11 12 40 9
-310 99 71 137 162
-311 24 8 85 31
-312 3 192 6 186
-313 1 166 145 153
-314 67 91 102 98
-315 154 107 98 131
-316 156 167 128 183
-317 1 166 2 184
-318 187 188 179 161
-319 1 180 127 150
-320 57 79 73 63
-321 26 50 84 76
-322 112 16 49 29
-323 55 111 90 135
-324 69 124 126 118
-325 167 157 160 152
-326 176 156 189 3
-327 144 138 163 164
-328 17 30 75 86
-329 144 178 171 183
-330 124 82 39 54
-331 134 139 129 151
-332 133 158 180 142
-333 23 16 7 173
-334 33 56 25 75
-335 159 170 184 186
-336 1 4 180 161
-337 11 4 172 174
-338 36 61 63 65
-339 100 27 73 19
-340 69 105 98 131
-341 114 125 83 108
-342 14 190 181 185
-343 121 78 19 32
-344 177 169 182 9
-345 67 123 59 81
-346 92 127 160 139
-347 34 56 191 40
-348 34 56 57 64
-349 44 15 8 86
-350 77 39 105 87
-351 154 150 107 152
-352 44 46 52 76
-353 133 158 137 107
-354 68 70 62 117
-355 22 26 27 73
-356 89 70 119 131
-357 34 35 46 17
-358 11 2 184 9
-359 92 136 62 117
-360 11 49 172 42
-361 99 155 147 162
-362 79 101 93 63
-363 100 38 82 93
-364 66 113 95 53
-365 136 149 129 130
-366 99 149 106 108
-367 23 34 16 17
-368 165 157 159 175
-369 156 169 172 183
-370 4 5 161 20
-371 111 101 93 94
-372 132 167 128 120
-373 24 28 74 31
-374 187 159 7 175
-375 47 15 50 18
-376 35 46 36 63
-377 44 25 8 21
-378 78 113 38 61
-379 12 5 72 20
-380 23 170 42 186
-381 56 24 75 43
-382 88 121 36 59
-383 122 146 97 141
-384 135 126 139 129
0

**************