C4graphGraph forms for C4 [ 384, 483 ] = BGCG(UG(ATD[192,38]);K1;7)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 483 ] = BGCG(UG(ATD[192,38]);K1;7).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {192, 210}, {192, 249}, {138, 200}, {130, 193}, {136, 203}, {145, 215}, {145, 214}, {189, 250}, {166, 239}, {171, 226}, {180, 255}, {189, 246}, {164, 232}, {149, 216}, {188, 241}, {146, 220}, {191, 241}, {171, 228}, {181, 250}, {153, 201}, {186, 234}, {146, 195}, {169, 248}, {155, 202}, {168, 251}, {160, 244}, {153, 204}, {154, 207}, {143, 217}, {177, 231}, {158, 200}, {138, 221}, {134, 222}, {136, 208}, {178, 235}, {143, 213}, {190, 229}, {135, 219}, {128, 222}, {153, 199}, {129, 223}, {137, 233}, {180, 212}, {167, 199}, {159, 255}, {170, 203}, {156, 254}, {134, 229}, {159, 252}, {174, 202}, {183, 211}, {180, 209}, {142, 232}, {162, 197}, {135, 239}, {190, 214}, {186, 210}, {186, 209}, {175, 194}, {157, 243}, {130, 237}, {185, 214}, {183, 216}, {189, 205}, {132, 245}, {180, 197}, {147, 226}, {148, 231}, {154, 233}, {145, 229}, {129, 244}, {152, 238}, {187, 205}, {154, 236}, {143, 248}, {147, 235}, {168, 211}, {141, 241}, {151, 234}, {168, 213}, {138, 245}, {177, 206}, {73, 201}, {84, 212}, {79, 207}, {78, 206}, {122, 250}, {77, 204}, {92, 221}, {99, 226}, {125, 254}, {98, 231}, {101, 224}, {82, 219}, {77, 199}, {119, 253}, {87, 220}, {90, 209}, {95, 211}, {127, 243}, {111, 225}, {75, 196}, {120, 247}, {126, 241}, {116, 228}, {84, 197}, {102, 247}, {109, 252}, {84, 198}, {80, 195}, {89, 202}, {88, 203}, {117, 227}, {124, 234}, {92, 196}, {110, 246}, {118, 238}, {67, 217}, {98, 248}, {68, 216}, {121, 228}, {81, 207}, {110, 240}, {74, 213}, {102, 249}, {125, 220}, {96, 194}, {99, 193}, {118, 212}, {115, 208}, {117, 214}, {90, 255}, {127, 218}, {68, 226}, {71, 224}, {85, 253}, {83, 255}, {111, 195}, {127, 211}, {124, 209}, {66, 236}, {64, 239}, {83, 252}, {91, 244}, {93, 237}, {74, 251}, {82, 227}, {120, 201}, {67, 240}, {93, 238}, {115, 199}, {123, 207}, {71, 242}, {75, 254}, {108, 218}, {122, 204}, {76, 251}, {104, 223}, {123, 194}, {125, 196}, {109, 215}, {116, 206}, {67, 248}, {122, 198}, {112, 205}, {76, 242}, {95, 225}, {97, 223}, {103, 217}, {13, 205}, {40, 233}, {52, 246}, {25, 218}, {39, 227}, {40, 236}, {27, 222}, {29, 219}, {16, 216}, {60, 244}, {31, 215}, {24, 208}, {22, 221}, {62, 245}, {47, 228}, {15, 193}, {41, 249}, {54, 231}, {34, 240}, {47, 253}, {46, 252}, {53, 230}, {61, 238}, {35, 247}, {62, 234}, {57, 237}, {50, 230}, {12, 218}, {57, 239}, {55, 225}, {40, 254}, {35, 245}, {5, 210}, {51, 235}, {52, 236}, {28, 193}, {41, 247}, {45, 243}, {13, 210}, {6, 230}, {36, 198}, {57, 219}, {21, 246}, {60, 223}, {55, 212}, {37, 198}, {9, 237}, {33, 196}, {27, 253}, {50, 213}, {14, 230}, {42, 194}, {1, 232}, {53, 220}, {37, 204}, {9, 224}, {2, 235}, {25, 243}, {21, 249}, {59, 215}, {49, 221}, {38, 203}, {32, 206}, {21, 250}, {19, 227}, {17, 224}, {42, 217}, {59, 200}, {43, 222}, {63, 202}, {48, 197}, {4, 242}, {49, 201}, {49, 200}, {9, 242}, {26, 225}, {20, 232}, {44, 208}, {20, 233}, {14, 240}, {61, 195}, {27, 229}, {4, 251}, {74, 330}, {87, 343}, {44, 301}, {74, 331}, {5, 263}, {36, 294}, {24, 282}, {94, 346}, {3, 262}, {69, 320}, {85, 339}, {1, 262}, {110, 361}, {113, 374}, {94, 342}, {108, 356}, {114, 378}, {37, 300}, {25, 275}, {72, 323}, {114, 377}, {94, 338}, {106, 358}, {10, 263}, {52, 313}, {40, 293}, {126, 371}, {30, 272}, {77, 323}, {39, 297}, {115, 380}, {50, 290}, {12, 285}, {44, 317}, {93, 332}, {111, 382}, {86, 324}, {4, 279}, {147, 384}, {56, 299}, {12, 287}, {91, 328}, {120, 363}, {33, 309}, {77, 345}, {122, 366}, {2, 279}, {22, 259}, {90, 335}, {103, 370}, {105, 380}, {34, 308}, {30, 265}, {80, 327}, {70, 337}, {45, 314}, {32, 311}, {1, 281}, {16, 264}, {119, 367}, {100, 381}, {116, 365}, {7, 285}, {2, 281}, {31, 260}, {107, 368}, {121, 354}, {50, 302}, {72, 340}, {123, 359}, {127, 355}, {6, 283}, {48, 301}, {45, 304}, {38, 315}, {101, 376}, {109, 368}, {20, 266}, {83, 333}, {54, 297}, {65, 350}, {55, 296}, {118, 361}, {126, 353}, {14, 302}, {25, 313}, {98, 322}, {2, 288}, {99, 321}, {11, 296}, {59, 280}, {19, 304}, {12, 303}, {19, 311}, {62, 282}, {98, 326}, {100, 320}, {112, 340}, {113, 341}, {5, 288}, {54, 275}, {43, 270}, {34, 260}, {78, 360}, {56, 286}, {39, 257}, {42, 269}, {114, 341}, {45, 261}, {79, 359}, {71, 367}, {93, 373}, {119, 351}, {42, 259}, {86, 383}, {55, 286}, {108, 327}, {36, 264}, {73, 357}, {70, 362}, {60, 273}, {88, 373}, {70, 363}, {53, 283}, {19, 316}, {88, 375}, {125, 338}, {33, 273}, {7, 310}, {63, 270}, {105, 347}, {106, 344}, {11, 312}, {63, 268}, {58, 265}, {39, 276}, {38, 277}, {126, 333}, {101, 337}, {124, 328}, {14, 315}, {89, 364}, {33, 276}, {27, 302}, {88, 366}, {112, 326}, {11, 316}, {13, 309}, {99, 347}, {104, 336}, {114, 331}, {72, 370}, {75, 369}, {5, 318}, {69, 382}, {20, 303}, {29, 289}, {70, 378}, {30, 290}, {92, 352}, {107, 343}, {120, 324}, {17, 300}, {79, 370}, {78, 371}, {26, 295}, {116, 329}, {6, 312}, {89, 359}, {15, 305}, {96, 350}, {48, 271}, {85, 362}, {73, 374}, {52, 267}, {94, 353}, {28, 348}, {69, 261}, {65, 257}, {47, 367}, {119, 311}, {35, 354}, {54, 375}, {105, 296}, {106, 299}, {38, 356}, {63, 381}, {47, 365}, {23, 340}, {61, 382}, {91, 280}, {9, 332}, {41, 364}, {23, 338}, {97, 292}, {3, 325}, {66, 260}, {8, 334}, {106, 300}, {13, 330}, {72, 271}, {18, 341}, {97, 294}, {21, 349}, {35, 363}, {100, 300}, {121, 305}, {10, 323}, {66, 267}, {17, 344}, {31, 341}, {51, 377}, {44, 358}, {34, 361}, {89, 274}, {48, 379}, {51, 383}, {68, 264}, {8, 325}, {23, 346}, {92, 273}, {41, 359}, {73, 263}, {26, 330}, {26, 331}, {91, 266}, {103, 310}, {96, 306}, {10, 345}, {59, 360}, {95, 268}, {4, 336}, {61, 361}, {56, 364}, {46, 378}, {23, 323}, {15, 347}, {8, 349}, {87, 258}, {64, 277}, {18, 327}, {102, 307}, {7, 336}, {65, 278}, {58, 365}, {110, 313}, {37, 381}, {29, 324}, {22, 332}, {8, 339}, {101, 318}, {7, 347}, {84, 264}, {80, 269}, {1, 351}, {65, 287}, {46, 368}, {16, 334}, {113, 303}, {118, 296}, {96, 319}, {105, 310}, {58, 346}, {124, 284}, {86, 311}, {29, 383}, {83, 305}, {82, 304}, {64, 291}, {104, 267}, {18, 374}, {56, 348}, {24, 380}, {103, 259}, {46, 331}, {3, 357}, {69, 291}, {31, 377}, {30, 376}, {28, 379}, {53, 338}, {117, 274}, {24, 368}, {76, 292}, {62, 342}, {28, 372}, {17, 376}, {32, 329}, {109, 260}, {76, 294}, {86, 316}, {97, 267}, {36, 335}, {78, 293}, {81, 317}, {113, 285}, {15, 354}, {16, 383}, {80, 289}, {107, 282}, {111, 286}, {3, 369}, {100, 278}, {75, 312}, {87, 292}, {82, 289}, {108, 287}, {115, 256}, {71, 307}, {117, 257}, {49, 324}, {60, 329}, {58, 335}, {18, 356}, {81, 295}, {66, 308}, {22, 352}, {123, 269}, {6, 369}, {11, 380}, {67, 315}, {95, 295}, {79, 310}, {57, 322}, {85, 302}, {81, 298}, {107, 272}, {121, 258}, {10, 374}, {90, 294}, {51, 334}, {102, 283}, {32, 351}, {64, 319}, {43, 340}, {104, 279}, {137, 265}, {140, 269}, {187, 314}, {141, 268}, {161, 291}, {137, 266}, {186, 318}, {144, 277}, {149, 275}, {150, 273}, {172, 299}, {155, 284}, {139, 259}, {189, 309}, {150, 286}, {145, 280}, {187, 306}, {192, 330}, {191, 308}, {151, 282}, {128, 270}, {162, 301}, {146, 258}, {175, 319}, {178, 291}, {132, 278}, {178, 288}, {172, 318}, {177, 293}, {149, 256}, {155, 270}, {151, 257}, {131, 276}, {133, 285}, {184, 288}, {157, 261}, {137, 272}, {166, 319}, {176, 298}, {132, 287}, {174, 307}, {192, 349}, {139, 276}, {173, 306}, {142, 303}, {156, 317}, {181, 278}, {191, 284}, {162, 262}, {184, 284}, {179, 279}, {168, 268}, {136, 301}, {159, 314}, {167, 256}, {140, 292}, {171, 258}, {131, 297}, {179, 281}, {165, 271}, {160, 266}, {43, 384}, {185, 274}, {173, 262}, {164, 271}, {152, 307}, {134, 298}, {157, 305}, {149, 313}, {142, 290}, {140, 289}, {143, 290}, {144, 317}, {155, 308}, {166, 265}, {159, 304}, {154, 298}, {163, 275}, {128, 306}, {170, 280}, {136, 315}, {161, 277}, {174, 283}, {179, 261}, {167, 272}, {183, 256}, {133, 316}, {156, 293}, {128, 314}, {156, 295}, {174, 274}, {133, 312}, {164, 281}, {150, 299}, {148, 297}, {139, 309}, {184, 263}, {130, 322}, {169, 360}, {131, 321}, {68, 384}, {176, 372}, {165, 353}, {148, 337}, {158, 344}, {139, 332}, {163, 363}, {151, 350}, {163, 362}, {172, 358}, {175, 357}, {161, 365}, {178, 382}, {160, 366}, {188, 371}, {157, 333}, {132, 342}, {163, 375}, {183, 355}, {133, 336}, {146, 327}, {160, 375}, {182, 353}, {165, 370}, {131, 345}, {176, 362}, {169, 371}, {135, 348}, {181, 366}, {140, 343}, {173, 369}, {129, 348}, {190, 355}, {150, 329}, {191, 352}, {170, 373}, {164, 379}, {185, 345}, {170, 328}, {176, 339}, {182, 339}, {190, 344}, {138, 354}, {166, 335}, {147, 377}, {175, 325}, {171, 321}, {169, 322}, {182, 349}, {129, 364}, {152, 373}, {141, 352}, {148, 378}, {112, 384}, {184, 328}, {167, 343}, {141, 381}, {134, 372}, {188, 334}, {135, 372}, {179, 320}, {173, 350}, {165, 342}, {144, 356}, {181, 320}, {142, 376}, {158, 360}, {144, 358}, {152, 367}, {177, 326}, {185, 321}, {130, 379}, {188, 325}, {161, 346}, {182, 333}, {153, 357}, {158, 355}, {187, 326}, {172, 337}, {162, 351} }>;

(II) A more general form is to represent the graph as the orbit of {192, 210} under the group generated by the following permutations:

a: (2, 119)(3, 142)(4, 86)(5, 85)(6, 113)(7, 11)(8, 101)(9, 16)(10, 14)(12, 75)(13, 163)(15, 55)(17, 188)(18, 53)(19, 104)(20, 173)(21, 148)(22, 183)(23, 38)(24, 79)(25, 33)(26, 35)(27, 184)(28, 180)(29, 76)(30, 175)(31, 174)(32, 179)(34, 185)(36, 57)(37, 169)(39, 52)(40, 65)(41, 46)(42, 167)(43, 170)(44, 165)(45, 60)(47, 178)(49, 168)(50, 73)(51, 71)(54, 189)(56, 83)(58, 64)(59, 63)(61, 171)(62, 81)(66, 117)(67, 77)(68, 93)(69, 116)(70, 192)(72, 136)(74, 120)(78, 100)(80, 87)(82, 97)(84, 130)(88, 112)(89, 109)(90, 135)(91, 128)(92, 127)(94, 144)(95, 138)(96, 137)(98, 122)(99, 118)(102, 114)(103, 115)(106, 126)(107, 123)(108, 125)(110, 131)(111, 121)(124, 134)(129, 159)(132, 156)(139, 149)(141, 158)(143, 153)(145, 155)(147, 152)(150, 157)(151, 154)(160, 187)(162, 164)(172, 182)(176, 186)(177, 181)(190, 191)(193, 212)(194, 272)(195, 258)(196, 218)(197, 379)(198, 322)(199, 217)(200, 268)(201, 213)(202, 215)(203, 340)(204, 248)(205, 375)(206, 320)(207, 282)(208, 370)(209, 372)(210, 362)(211, 221)(214, 308)(216, 332)(219, 294)(220, 327)(222, 328)(223, 304)(224, 334)(225, 354)(226, 238)(227, 267)(228, 382)(229, 284)(230, 374)(231, 250)(232, 262)(233, 350)(234, 298)(235, 367)(236, 257)(237, 264)(239, 335)(240, 345)(241, 344)(242, 383)(243, 273)(244, 314)(245, 295)(246, 297)(247, 331)(249, 378)(251, 324)(252, 364)(253, 288)(254, 287)(255, 348)(256, 259)(260, 274)(261, 329)(263, 302)(265, 319)(266, 306)(269, 343)(270, 280)(271, 301)(275, 309)(276, 313)(277, 346)(278, 293)(279, 311)(281, 351)(283, 341)(285, 312)(286, 305)(289, 292)(290, 357)(291, 365)(296, 347)(299, 333)(300, 371)(303, 369)(307, 377)(310, 380)(315, 323)(316, 336)(317, 342)(318, 339)(321, 361)(325, 376)(326, 366)(330, 363)(337, 349)(338, 356)(352, 355)(353, 358)(359, 368)(360, 381)(373, 384)
b: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 27)(18, 29)(20, 32)(22, 34)(23, 36)(25, 39)(26, 41)(28, 44)(30, 47)(31, 49)(33, 52)(35, 46)(37, 43)(38, 57)(40, 60)(42, 61)(45, 65)(50, 71)(51, 73)(53, 76)(55, 79)(56, 81)(62, 83)(66, 92)(67, 93)(68, 77)(69, 96)(72, 84)(74, 102)(75, 104)(78, 91)(82, 108)(85, 101)(86, 113)(88, 98)(89, 95)(90, 94)(97, 125)(99, 115)(100, 128)(103, 118)(106, 134)(107, 121)(109, 138)(110, 139)(111, 123)(112, 122)(114, 120)(116, 137)(117, 127)(119, 142)(124, 126)(129, 156)(130, 136)(131, 149)(132, 159)(135, 144)(140, 146)(141, 155)(143, 152)(145, 158)(147, 153)(148, 163)(150, 154)(151, 157)(160, 177)(161, 166)(162, 164)(165, 180)(167, 171)(168, 174)(169, 170)(172, 176)(173, 179)(175, 178)(181, 187)(182, 186)(183, 185)(184, 188)(193, 208)(194, 382)(195, 269)(196, 267)(197, 271)(198, 340)(199, 226)(200, 215)(201, 377)(202, 268)(203, 322)(204, 384)(205, 250)(206, 266)(207, 286)(209, 353)(210, 349)(211, 274)(212, 370)(213, 307)(214, 355)(216, 345)(217, 238)(218, 227)(219, 356)(220, 292)(221, 260)(222, 300)(223, 254)(224, 302)(225, 359)(228, 272)(229, 344)(230, 242)(231, 375)(232, 351)(233, 329)(234, 333)(235, 357)(236, 273)(237, 315)(239, 277)(240, 332)(241, 284)(243, 257)(244, 293)(245, 252)(246, 309)(247, 331)(248, 373)(249, 330)(251, 283)(253, 376)(255, 342)(256, 321)(258, 343)(259, 361)(261, 350)(262, 281)(263, 334)(264, 323)(265, 365)(270, 381)(275, 297)(276, 313)(278, 314)(279, 369)(280, 360)(282, 305)(285, 316)(287, 304)(288, 325)(289, 327)(290, 367)(291, 319)(294, 338)(295, 364)(296, 310)(298, 299)(301, 379)(303, 311)(306, 320)(308, 352)(312, 336)(317, 348)(318, 339)(324, 341)(326, 366)(328, 371)(335, 346)(337, 362)(347, 380)(354, 368)(358, 372)(363, 378)(374, 383)
c: (2, 179)(3, 173)(5, 100)(8, 128)(10, 132)(12, 113)(13, 141)(15, 99)(16, 159)(17, 101)(18, 108)(19, 86)(21, 155)(22, 139)(23, 94)(24, 115)(25, 31)(26, 95)(27, 85)(29, 82)(33, 92)(34, 110)(35, 185)(36, 90)(37, 186)(39, 49)(41, 89)(43, 182)(45, 51)(46, 183)(52, 66)(54, 59)(62, 77)(63, 192)(65, 73)(68, 83)(69, 178)(70, 190)(72, 165)(74, 168)(78, 177)(84, 180)(88, 170)(91, 160)(96, 175)(98, 169)(102, 174)(106, 172)(107, 167)(109, 149)(112, 126)(114, 127)(117, 120)(121, 171)(122, 124)(131, 138)(134, 176)(145, 163)(147, 157)(148, 158)(151, 153)(181, 184)(187, 188)(189, 191)(198, 209)(199, 282)(200, 297)(201, 257)(202, 249)(204, 234)(205, 241)(210, 381)(211, 331)(214, 363)(215, 275)(216, 252)(218, 341)(221, 276)(222, 339)(226, 305)(227, 324)(229, 362)(231, 360)(235, 261)(243, 377)(245, 345)(246, 308)(247, 274)(250, 284)(255, 264)(256, 368)(260, 313)(263, 278)(268, 330)(270, 349)(280, 375)(287, 374)(288, 320)(300, 318)(304, 383)(306, 325)(309, 352)(314, 334)(321, 354)(323, 342)(326, 371)(328, 366)(333, 384)(337, 344)(340, 353)(350, 357)(355, 378)
d: (1, 2, 164, 179)(3, 147, 165, 45)(4, 20)(5, 28, 100, 32)(6, 31, 103, 25)(7, 12, 133, 113)(8, 43, 126, 187)(9, 160, 71, 91)(10, 15, 65, 86)(11, 18, 105, 108)(13, 176, 63, 78)(14, 34, 67, 110)(16, 23, 83, 96)(17, 60, 101, 129)(19, 73, 99, 132)(21, 27, 191, 98)(22, 54, 102, 145)(24, 80, 115, 146)(26, 81, 95, 156)(29, 77, 121, 151)(30, 97)(33, 70, 89, 158)(35, 117, 49, 131)(36, 58, 90, 166)(37, 116, 186, 135)(38, 118)(39, 120, 185, 138)(40, 74, 154, 168)(41, 190, 92, 148)(42, 149, 53, 109)(44, 111)(46, 123, 183, 125)(47, 124, 57, 122)(48, 69, 162, 178)(50, 66, 143, 52)(51, 72, 157, 173)(55, 144)(56, 106, 150, 172)(59, 139, 163, 174)(61, 136)(62, 82, 153, 171)(64, 84, 161, 180)(68, 94, 159, 175)(75, 114, 79, 127)(76, 137)(85, 155, 169, 189)(87, 107, 140, 167)(88, 152, 170, 93)(104, 142)(112, 182, 128, 188)(119, 184, 130, 181)(134, 141, 177, 192)(193, 278, 311, 263)(194, 216, 338, 252)(195, 208)(196, 378, 359, 355)(197, 291)(198, 365, 209, 239)(199, 258, 282, 289)(200, 276, 363, 274)(201, 321, 245, 227)(202, 360, 309, 362)(203, 238)(204, 228, 234, 219)(205, 339, 270, 371)(206, 210, 372, 381)(207, 211, 254, 331)(212, 277)(213, 236)(214, 221, 297, 247)(215, 259, 275, 283)(217, 313, 230, 260)(218, 312, 341, 310)(220, 368, 269, 256)(222, 241, 326, 349)(223, 376)(224, 244)(225, 317)(226, 342, 304, 357)(229, 352, 231, 249)(232, 279)(233, 251)(235, 271, 261, 262)(237, 366, 367, 328)(242, 266)(243, 369, 377, 370)(246, 302, 308, 248)(250, 253, 284, 322)(255, 319, 264, 346)(257, 324, 345, 354)(265, 294)(267, 290)(268, 293, 330, 298)(272, 292)(273, 337, 364, 344)(280, 332, 375, 307)(286, 358)(287, 316, 374, 347)(288, 379, 320, 351)(296, 356)(300, 329, 318, 348)(301, 382)(303, 336)(305, 350, 383, 323)(306, 334, 340, 333)(314, 325, 384, 353)(315, 361)(327, 380)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 483 ]
384
-1 232 281 262 351
-2 288 235 279 281
-3 357 325 369 262
-4 242 279 336 251
-5 210 288 263 318
-6 312 369 283 230
-7 310 336 347 285
-8 334 325 349 339
-9 242 332 224 237
-10 374 323 345 263
-11 312 380 316 296
-12 287 303 218 285
-13 330 210 309 205
-14 302 315 240 230
-15 354 193 347 305
-16 264 334 216 383
-17 376 300 344 224
-18 341 374 356 327
-19 311 227 304 316
-20 232 233 266 303
-21 246 249 250 349
-22 352 221 332 259
-23 323 346 338 340
-24 368 380 282 208
-25 275 243 313 218
-26 330 331 225 295
-27 253 222 302 229
-28 379 193 348 372
-29 289 324 383 219
-30 265 376 290 272
-31 341 377 215 260
-32 311 206 329 351
-33 276 309 196 273
-34 308 260 240 361
-35 363 354 245 247
-36 198 264 335 294
-37 198 300 204 381
-38 277 356 203 315
-39 297 276 257 227
-40 254 233 236 293
-41 364 247 249 359
-42 269 259 194 217
-43 222 270 340 384
-44 301 358 317 208
-45 243 314 304 261
-46 331 378 368 252
-47 253 365 367 228
-48 301 379 271 197
-49 221 200 201 324
-50 213 290 302 230
-51 377 235 334 383
-52 267 246 236 313
-53 220 283 338 230
-54 231 275 297 375
-55 286 212 225 296
-56 286 364 299 348
-57 322 237 239 219
-58 265 365 335 346
-59 200 280 215 360
-60 244 223 273 329
-61 238 195 382 361
-62 342 234 245 282
-63 202 268 270 381
-64 319 277 291 239
-65 287 278 257 350
-66 308 267 236 260
-67 248 315 217 240
-68 264 226 216 384
-69 320 291 261 382
-70 363 378 337 362
-71 242 224 367 307
-72 323 271 370 340
-73 374 201 357 263
-74 330 331 213 251
-75 254 312 369 196
-76 242 292 294 251
-77 199 323 345 204
-78 293 206 360 371
-79 310 359 370 207
-80 289 269 195 327
-81 298 207 295 317
-82 289 227 304 219
-83 255 333 305 252
-84 198 264 212 197
-85 253 302 339 362
-86 311 324 316 383
-87 220 343 258 292
-88 375 366 203 373
-89 364 202 359 274
-90 209 255 335 294
-91 244 266 280 328
-92 352 221 196 273
-93 332 237 238 373
-94 342 353 346 338
-95 211 268 225 295
-96 319 194 306 350
-97 223 267 292 294
-98 231 322 248 326
-99 321 193 226 347
-100 320 278 300 381
-101 376 224 337 318
-102 247 249 283 307
-103 310 259 370 217
-104 223 267 279 336
-105 310 347 380 296
-106 299 300 344 358
-107 343 368 282 272
-108 287 356 327 218
-109 368 215 260 252
-110 246 313 240 361
-111 286 225 195 382
-112 205 326 340 384
-113 341 374 303 285
-114 341 331 377 378
-115 199 256 380 208
-116 365 206 228 329
-117 257 214 227 274
-118 212 238 361 296
-119 253 311 367 351
-120 363 201 247 324
-121 354 258 228 305
-122 198 366 204 250
-123 269 194 359 207
-124 209 234 284 328
-125 220 254 338 196
-126 353 333 371 241
-127 243 211 355 218
-128 222 270 314 306
-129 364 244 223 348
-130 322 379 193 237
-131 297 276 321 345
-132 287 342 245 278
-133 312 336 316 285
-134 298 222 229 372
-135 348 239 372 219
-136 301 203 315 208
-137 265 233 266 272
-138 221 200 354 245
-139 276 309 332 259
-140 343 289 269 292
-141 352 268 381 241
-142 232 376 290 303
-143 213 290 248 217
-144 277 356 358 317
-145 214 280 215 229
-146 220 258 195 327
-147 377 235 226 384
-148 231 297 378 337
-149 275 256 313 216
-150 286 299 273 329
-151 234 257 282 350
-152 367 238 307 373
-153 199 201 357 204
-154 298 233 236 207
-155 308 202 270 284
-156 254 293 295 317
-157 243 333 261 305
-158 200 344 355 360
-159 255 314 304 252
-160 375 244 266 366
-161 277 365 291 346
-162 301 262 197 351
-163 275 363 375 362
-164 232 379 281 271
-165 342 353 271 370
-166 319 265 335 239
-167 199 343 256 272
-168 211 213 268 251
-169 322 248 360 371
-170 203 280 328 373
-171 321 258 226 228
-172 299 358 337 318
-173 369 262 306 350
-174 202 283 274 307
-175 319 357 325 194
-176 298 339 372 362
-177 231 293 326 206
-178 288 235 291 382
-179 320 279 281 261
-180 209 255 212 197
-181 320 278 366 250
-182 353 333 349 339
-183 211 256 355 216
-184 288 284 328 263
-185 321 345 214 274
-186 209 210 234 318
-187 314 205 326 306
-188 334 325 371 241
-189 309 246 205 250
-190 344 355 214 229
-191 308 352 284 241
-192 330 210 249 349
-193 99 15 28 130
-194 123 96 42 175
-195 111 80 146 61
-196 33 92 125 75
-197 48 180 84 162
-198 122 36 37 84
-199 77 167 115 153
-200 59 158 49 138
-201 49 73 120 153
-202 89 155 63 174
-203 88 136 38 170
-204 77 122 37 153
-205 187 13 112 189
-206 78 177 116 32
-207 154 79 123 81
-208 44 24 136 115
-209 90 124 180 186
-210 13 5 192 186
-211 168 127 95 183
-212 55 180 84 118
-213 143 168 50 74
-214 145 190 117 185
-215 145 59 31 109
-216 68 16 149 183
-217 143 67 103 42
-218 12 25 127 108
-219 57 135 82 29
-220 146 125 53 87
-221 22 92 49 138
-222 134 27 128 43
-223 60 104 129 97
-224 101 71 17 9
-225 55 111 26 95
-226 99 68 147 171
-227 82 39 117 19
-228 121 47 116 171
-229 134 145 190 27
-230 14 6 50 53
-231 177 148 54 98
-232 1 20 142 164
-233 154 137 40 20
-234 124 62 151 186
-235 2 178 147 51
-236 66 154 40 52
-237 57 93 9 130
-238 93 61 118 152
-239 166 57 135 64
-240 110 34 67 14
-241 188 191 126 141
-242 4 71 9 76
-243 45 25 157 127
-244 91 60 160 129
-245 132 35 138 62
-246 110 189 52 21
-247 35 102 41 120
-248 143 67 169 98
-249 102 192 41 21
-250 122 189 181 21
-251 168 4 74 76
-252 46 159 83 109
-253 47 27 85 119
-254 156 125 40 75
-255 90 180 159 83
-256 167 115 149 183
-257 39 117 151 65
-258 121 146 171 87
-259 22 103 139 42
-260 66 34 31 109
-261 45 69 157 179
-262 1 3 162 173
-263 5 73 184 10
-264 68 36 16 84
-265 166 58 137 30
-266 91 137 160 20
-267 66 104 52 97
-268 168 95 63 141
-269 123 80 140 42
-270 155 128 63 43
-271 165 48 72 164
-272 167 137 30 107
-273 33 92 60 150
-274 89 117 174 185
-275 25 149 163 54
-276 33 39 139 131
-277 144 38 161 64
-278 132 100 181 65
-279 2 179 4 104
-280 145 91 59 170
-281 1 2 179 164
-282 24 62 107 151
-283 102 6 53 174
-284 155 124 191 184
-285 12 133 113 7
-286 55 56 111 150
-287 132 12 108 65
-288 2 178 5 184
-289 80 82 29 140
-290 143 50 30 142
-291 178 69 161 64
-292 140 97 76 87
-293 78 177 156 40
-294 90 36 97 76
-295 156 26 81 95
-296 11 55 105 118
-297 148 39 54 131
-298 154 176 134 81
-299 56 106 150 172
-300 100 37 17 106
-301 44 48 136 162
-302 14 27 50 85
-303 12 113 20 142
-304 45 82 159 19
-305 121 157 15 83
-306 187 128 96 173
-307 102 71 152 174
-308 66 34 155 191
-309 33 13 189 139
-310 79 103 105 7
-311 19 86 119 32
-312 11 133 6 75
-313 110 25 149 52
-314 187 45 159 128
-315 67 14 136 38
-316 11 133 19 86
-317 44 144 156 81
-318 101 5 172 186
-319 166 96 64 175
-320 100 69 179 181
-321 99 171 185 131
-322 57 169 130 98
-323 77 23 72 10
-324 49 29 86 120
-325 188 3 8 175
-326 187 177 112 98
-327 80 146 18 108
-328 91 124 170 184
-329 60 116 150 32
-330 13 26 192 74
-331 46 26 114 74
-332 22 93 139 9
-333 157 126 83 182
-334 188 16 51 8
-335 166 90 36 58
-336 133 4 104 7
-337 101 70 148 172
-338 23 125 94 53
-339 176 182 8 85
-340 23 112 72 43
-341 113 114 18 31
-342 132 165 94 62
-343 167 107 140 87
-344 190 158 17 106
-345 77 185 10 131
-346 23 58 94 161
-347 99 15 105 7
-348 56 135 28 129
-349 192 182 8 21
-350 96 151 173 65
-351 1 162 119 32
-352 22 92 191 141
-353 165 126 94 182
-354 121 35 15 138
-355 190 158 127 183
-356 144 38 18 108
-357 3 73 153 175
-358 44 144 106 172
-359 89 79 123 41
-360 78 59 158 169
-361 110 34 61 118
-362 176 70 85 163
-363 35 70 163 120
-364 56 89 41 129
-365 47 58 116 161
-366 88 122 181 160
-367 47 71 119 152
-368 24 46 107 109
-369 3 6 173 75
-370 165 79 103 72
-371 78 188 169 126
-372 176 134 135 28
-373 88 93 170 152
-374 113 18 73 10
-375 88 160 163 54
-376 101 17 30 142
-377 114 147 51 31
-378 46 70 114 148
-379 48 28 130 164
-380 11 24 115 105
-381 100 37 63 141
-382 111 178 69 61
-383 16 29 51 86
-384 68 112 147 43
0

**************