C4graphGraph forms for C4 [ 384, 488 ] = BGCG(UG(ATD[192,44]);K1;2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 488 ] = BGCG(UG(ATD[192,44]);K1;2).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {192, 220}, {192, 234}, {153, 216}, {174, 237}, {186, 249}, {175, 235}, {159, 218}, {141, 203}, {179, 244}, {148, 220}, {156, 212}, {158, 215}, {177, 248}, {160, 233}, {159, 213}, {146, 222}, {147, 223}, {137, 196}, {163, 238}, {155, 203}, {180, 228}, {130, 211}, {154, 203}, {141, 220}, {132, 213}, {134, 215}, {133, 215}, {140, 222}, {158, 205}, {154, 206}, {183, 227}, {131, 214}, {176, 229}, {140, 217}, {142, 216}, {169, 255}, {144, 199}, {130, 218}, {152, 193}, {174, 247}, {168, 241}, {170, 240}, {187, 225}, {173, 247}, {155, 199}, {151, 202}, {166, 251}, {160, 253}, {175, 240}, {190, 225}, {152, 248}, {154, 250}, {172, 205}, {168, 202}, {131, 224}, {161, 194}, {140, 232}, {157, 249}, {146, 246}, {152, 254}, {178, 212}, {184, 223}, {151, 255}, {157, 245}, {160, 203}, {132, 232}, {145, 253}, {158, 243}, {144, 254}, {175, 193}, {143, 224}, {179, 195}, {152, 233}, {156, 237}, {187, 206}, {189, 200}, {155, 237}, {179, 197}, {132, 243}, {168, 210}, {190, 196}, {184, 194}, {181, 207}, {171, 209}, {175, 212}, {186, 199}, {78, 206}, {97, 225}, {102, 229}, {117, 246}, {127, 252}, {73, 205}, {112, 244}, {71, 194}, {123, 254}, {96, 230}, {96, 231}, {108, 235}, {109, 234}, {67, 202}, {90, 211}, {112, 249}, {116, 253}, {110, 228}, {123, 241}, {79, 196}, {85, 222}, {94, 213}, {87, 219}, {111, 227}, {115, 255}, {72, 197}, {117, 251}, {125, 243}, {69, 202}, {111, 224}, {101, 240}, {68, 210}, {74, 220}, {73, 223}, {74, 208}, {93, 199}, {99, 249}, {117, 238}, {125, 230}, {79, 210}, {109, 242}, {121, 230}, {110, 204}, {108, 200}, {126, 218}, {68, 226}, {92, 250}, {82, 245}, {98, 197}, {105, 206}, {64, 232}, {87, 255}, {75, 227}, {90, 242}, {94, 246}, {110, 198}, {85, 252}, {122, 208}, {71, 236}, {100, 207}, {70, 234}, {113, 221}, {104, 197}, {89, 247}, {127, 209}, {107, 219}, {86, 231}, {92, 238}, {93, 239}, {90, 236}, {95, 233}, {70, 254}, {66, 251}, {105, 210}, {99, 222}, {100, 217}, {99, 221}, {81, 238}, {124, 195}, {15, 207}, {34, 226}, {24, 216}, {16, 209}, {30, 223}, {10, 201}, {49, 242}, {44, 239}, {39, 228}, {24, 219}, {33, 229}, {46, 231}, {63, 245}, {48, 252}, {60, 240}, {12, 193}, {58, 247}, {14, 195}, {45, 227}, {50, 252}, {37, 234}, {5, 213}, {58, 235}, {8, 219}, {3, 214}, {53, 224}, {19, 198}, {17, 196}, {35, 244}, {16, 200}, {45, 245}, {37, 253}, {8, 209}, {47, 246}, {28, 198}, {60, 231}, {17, 204}, {38, 251}, {20, 201}, {13, 237}, {32, 193}, {33, 195}, {12, 239}, {52, 215}, {51, 208}, {37, 198}, {61, 217}, {14, 235}, {53, 208}, {59, 221}, {63, 217}, {26, 242}, {48, 216}, {51, 218}, {63, 214}, {61, 212}, {4, 239}, {35, 200}, {31, 244}, {10, 225}, {7, 236}, {29, 243}, {61, 211}, {18, 226}, {28, 236}, {21, 228}, {61, 204}, {23, 229}, {2, 241}, {41, 221}, {59, 207}, {56, 204}, {13, 248}, {31, 233}, {62, 201}, {2, 250}, {10, 241}, {25, 226}, {19, 232}, {26, 230}, {62, 194}, {47, 211}, {5, 248}, {51, 205}, {5, 250}, {54, 201}, {41, 214}, {71, 326}, {28, 286}, {43, 296}, {97, 354}, {126, 381}, {22, 275}, {57, 316}, {101, 352}, {103, 354}, {76, 330}, {2, 261}, {39, 288}, {38, 289}, {43, 291}, {72, 320}, {120, 368}, {21, 284}, {39, 301}, {74, 320}, {116, 382}, {62, 309}, {67, 328}, {23, 283}, {80, 348}, {58, 310}, {98, 366}, {126, 370}, {52, 313}, {80, 350}, {95, 337}, {121, 375}, {9, 262}, {64, 335}, {22, 281}, {95, 336}, {114, 381}, {8, 280}, {83, 323}, {124, 364}, {72, 346}, {114, 352}, {63, 300}, {86, 325}, {69, 342}, {1, 277}, {78, 346}, {30, 266}, {93, 329}, {50, 295}, {81, 324}, {70, 339}, {51, 293}, {57, 303}, {125, 363}, {2, 277}, {52, 291}, {38, 305}, {17, 262}, {90, 333}, {109, 378}, {118, 353}, {127, 360}, {9, 273}, {46, 310}, {16, 264}, {109, 373}, {11, 274}, {67, 346}, {36, 317}, {35, 313}, {52, 302}, {117, 367}, {33, 314}, {84, 335}, {41, 306}, {124, 359}, {22, 267}, {81, 332}, {38, 315}, {31, 258}, {89, 324}, {107, 374}, {125, 355}, {44, 269}, {96, 321}, {114, 339}, {13, 303}, {69, 358}, {100, 327}, {113, 338}, {106, 334}, {20, 305}, {55, 274}, {44, 265}, {82, 372}, {101, 323}, {3, 292}, {55, 272}, {36, 259}, {32, 263}, {5, 290}, {103, 334}, {108, 325}, {115, 345}, {119, 349}, {40, 259}, {124, 343}, {93, 369}, {119, 347}, {75, 358}, {42, 260}, {49, 257}, {1, 304}, {74, 379}, {122, 331}, {112, 322}, {7, 308}, {4, 304}, {118, 322}, {60, 265}, {73, 382}, {75, 380}, {92, 363}, {20, 300}, {76, 372}, {27, 291}, {102, 350}, {104, 336}, {6, 319}, {185, 384}, {66, 379}, {64, 377}, {36, 285}, {32, 281}, {4, 318}, {73, 371}, {64, 378}, {19, 297}, {98, 344}, {100, 350}, {115, 329}, {15, 308}, {40, 275}, {29, 294}, {25, 290}, {91, 352}, {110, 341}, {23, 298}, {69, 376}, {65, 380}, {87, 362}, {22, 296}, {42, 276}, {33, 287}, {95, 353}, {102, 344}, {49, 270}, {118, 329}, {79, 271}, {112, 304}, {56, 377}, {42, 360}, {78, 268}, {127, 317}, {11, 328}, {83, 272}, {72, 267}, {25, 349}, {83, 279}, {75, 271}, {55, 371}, {27, 351}, {19, 342}, {58, 383}, {55, 370}, {119, 306}, {80, 278}, {85, 275}, {103, 289}, {16, 343}, {45, 362}, {107, 300}, {20, 348}, {36, 364}, {27, 339}, {24, 337}, {94, 279}, {111, 294}, {30, 340}, {3, 328}, {12, 327}, {26, 342}, {11, 326}, {104, 293}, {39, 361}, {88, 278}, {115, 317}, {27, 340}, {76, 259}, {46, 353}, {120, 311}, {24, 328}, {82, 258}, {56, 360}, {59, 362}, {91, 266}, {53, 359}, {94, 268}, {96, 306}, {1, 338}, {44, 383}, {18, 321}, {7, 340}, {34, 374}, {99, 311}, {107, 319}, {4, 337}, {54, 355}, {123, 302}, {66, 276}, {101, 307}, {113, 295}, {48, 359}, {86, 257}, {54, 366}, {81, 265}, {68, 284}, {92, 260}, {34, 379}, {84, 269}, {66, 283}, {3, 345}, {56, 354}, {45, 375}, {47, 372}, {79, 276}, {54, 365}, {50, 361}, {116, 303}, {118, 301}, {121, 290}, {23, 331}, {30, 322}, {25, 325}, {105, 309}, {29, 320}, {88, 261}, {105, 308}, {10, 340}, {65, 287}, {42, 372}, {32, 382}, {121, 295}, {6, 345}, {35, 380}, {102, 313}, {116, 299}, {47, 335}, {122, 282}, {15, 366}, {57, 344}, {43, 330}, {120, 281}, {41, 331}, {6, 357}, {14, 365}, {17, 373}, {87, 307}, {49, 341}, {37, 321}, {88, 316}, {83, 310}, {14, 360}, {21, 371}, {126, 280}, {43, 323}, {77, 293}, {62, 342}, {103, 271}, {46, 327}, {65, 296}, {119, 286}, {106, 256}, {6, 365}, {77, 294}, {60, 343}, {8, 355}, {34, 334}, {77, 289}, {18, 383}, {86, 315}, {71, 298}, {114, 287}, {31, 369}, {78, 288}, {91, 309}, {106, 260}, {21, 378}, {29, 370}, {108, 285}, {57, 330}, {113, 258}, {1, 373}, {59, 335}, {111, 283}, {12, 377}, {77, 312}, {68, 305}, {48, 325}, {40, 349}, {91, 302}, {122, 271}, {120, 270}, {123, 268}, {50, 330}, {84, 300}, {80, 296}, {53, 333}, {9, 368}, {82, 299}, {15, 374}, {11, 369}, {40, 338}, {89, 291}, {97, 283}, {104, 274}, {9, 370}, {76, 311}, {13, 368}, {88, 293}, {89, 292}, {97, 284}, {106, 279}, {18, 364}, {85, 299}, {70, 312}, {7, 376}, {67, 316}, {28, 355}, {26, 357}, {186, 314}, {128, 257}, {191, 318}, {159, 286}, {168, 298}, {163, 288}, {136, 268}, {181, 305}, {166, 290}, {143, 266}, {191, 314}, {190, 315}, {183, 306}, {170, 303}, {162, 295}, {137, 270}, {189, 314}, {150, 273}, {149, 274}, {140, 260}, {164, 301}, {129, 266}, {165, 297}, {145, 284}, {170, 292}, {136, 263}, {165, 298}, {145, 257}, {153, 264}, {173, 316}, {156, 269}, {191, 301}, {163, 304}, {133, 273}, {142, 282}, {149, 256}, {163, 310}, {145, 262}, {160, 311}, {139, 275}, {162, 315}, {133, 287}, {153, 259}, {146, 264}, {135, 285}, {129, 282}, {138, 278}, {155, 263}, {135, 282}, {128, 286}, {173, 307}, {144, 270}, {134, 280}, {167, 312}, {171, 308}, {135, 294}, {170, 267}, {166, 263}, {158, 319}, {169, 267}, {141, 302}, {150, 309}, {129, 292}, {166, 256}, {178, 276}, {182, 273}, {150, 318}, {147, 313}, {172, 262}, {130, 297}, {189, 278}, {148, 319}, {169, 261}, {188, 272}, {147, 318}, {181, 280}, {176, 285}, {164, 265}, {135, 297}, {131, 307}, {161, 272}, {164, 277}, {143, 317}, {167, 277}, {164, 279}, {173, 281}, {148, 289}, {184, 256}, {178, 264}, {183, 269}, {144, 299}, {191, 258}, {134, 312}, {157, 349}, {65, 384}, {165, 359}, {161, 356}, {192, 261}, {133, 322}, {151, 336}, {142, 329}, {137, 321}, {190, 374}, {184, 368}, {182, 382}, {178, 378}, {172, 356}, {132, 333}, {188, 373}, {154, 339}, {150, 351}, {138, 320}, {161, 367}, {185, 375}, {182, 376}, {171, 357}, {162, 364}, {139, 324}, {142, 351}, {136, 347}, {189, 366}, {139, 344}, {84, 384}, {188, 361}, {176, 358}, {174, 377}, {141, 341}, {149, 332}, {182, 367}, {165, 380}, {131, 351}, {187, 358}, {143, 337}, {177, 367}, {172, 332}, {192, 288}, {98, 384}, {136, 363}, {180, 338}, {130, 363}, {183, 350}, {148, 381}, {177, 347}, {186, 336}, {129, 362}, {139, 352}, {181, 345}, {149, 376}, {138, 356}, {147, 381}, {169, 326}, {179, 348}, {146, 354}, {167, 341}, {185, 331}, {151, 356}, {153, 365}, {157, 361}, {128, 375}, {180, 323}, {171, 348}, {180, 332}, {188, 324}, {162, 347}, {174, 343}, {137, 371}, {159, 357}, {138, 369}, {134, 379}, {187, 326}, {176, 333}, {167, 346}, {156, 353}, {185, 327}, {128, 383}, {177, 334} }>;

(II) A more general form is to represent the graph as the orbit of {192, 220} under the group generated by the following permutations:

a: (2, 40)(3, 38)(4, 17)(5, 22)(6, 20)(7, 16)(8, 15)(9, 12)(10, 153)(11, 86)(13, 32)(14, 62)(18, 151)(19, 33)(21, 118)(23, 135)(24, 190)(25, 169)(26, 179)(27, 146)(28, 189)(29, 185)(30, 178)(31, 49)(34, 87)(35, 90)(36, 168)(37, 186)(41, 77)(42, 91)(43, 94)(44, 172)(45, 74)(46, 55)(47, 52)(48, 187)(50, 78)(51, 183)(53, 75)(56, 150)(57, 136)(58, 161)(59, 134)(60, 149)(61, 147)(63, 148)(64, 133)(65, 132)(66, 129)(67, 162)(68, 115)(69, 124)(70, 99)(71, 108)(72, 121)(73, 156)(76, 123)(79, 143)(80, 159)(82, 141)(84, 158)(85, 154)(88, 119)(89, 117)(92, 139)(93, 145)(95, 137)(96, 104)(97, 142)(98, 125)(100, 126)(101, 106)(102, 130)(103, 131)(105, 127)(109, 112)(110, 191)(111, 122)(113, 167)(114, 140)(116, 155)(120, 152)(128, 138)(144, 160)(157, 192)(163, 188)(164, 180)(165, 176)(166, 170)(173, 177)(174, 182)(175, 184)(193, 368)(194, 235)(195, 342)(196, 337)(197, 230)(198, 314)(199, 253)(200, 236)(201, 365)(202, 364)(203, 299)(204, 318)(205, 269)(206, 252)(207, 280)(208, 227)(209, 308)(210, 317)(211, 313)(212, 223)(213, 296)(214, 289)(215, 335)(216, 225)(217, 381)(218, 350)(219, 374)(220, 245)(221, 312)(222, 339)(224, 271)(226, 255)(228, 301)(229, 297)(231, 274)(232, 287)(233, 270)(234, 249)(237, 382)(238, 324)(239, 262)(240, 256)(241, 259)(242, 244)(243, 384)(246, 291)(247, 367)(248, 281)(250, 275)(251, 292)(254, 311)(257, 369)(258, 341)(260, 352)(261, 349)(263, 303)(264, 340)(265, 332)(266, 276)(267, 290)(268, 330)(272, 310)(273, 377)(277, 338)(278, 286)(279, 323)(282, 283)(284, 329)(285, 298)(288, 361)(293, 306)(294, 331)(295, 346)(300, 319)(302, 372)(304, 373)(305, 345)(307, 334)(309, 360)(315, 328)(316, 347)(320, 375)(321, 336)(322, 378)(325, 326)(327, 370)(333, 380)(343, 376)(344, 363)(348, 357)(351, 354)(353, 371)(355, 366)(356, 383)(358, 359)(362, 379)
b: (1, 2)(3, 33)(4, 88)(5, 17)(6, 14)(7, 85)(8, 16)(9, 13)(10, 40)(11, 186)(12, 51)(15, 48)(18, 38)(19, 47)(20, 36)(21, 136)(22, 30)(23, 41)(24, 189)(25, 190)(26, 42)(27, 139)(28, 146)(29, 156)(31, 151)(32, 73)(34, 86)(35, 87)(37, 117)(39, 78)(43, 91)(44, 77)(45, 75)(46, 74)(49, 106)(50, 105)(52, 101)(53, 100)(54, 153)(55, 155)(56, 159)(57, 150)(58, 148)(59, 165)(60, 134)(61, 132)(62, 76)(63, 176)(64, 130)(65, 129)(66, 96)(67, 191)(68, 162)(69, 82)(70, 81)(71, 99)(72, 118)(79, 121)(80, 143)(83, 141)(84, 135)(89, 114)(90, 140)(92, 109)(93, 104)(94, 110)(95, 138)(97, 119)(98, 142)(102, 131)(103, 128)(107, 108)(111, 183)(112, 169)(113, 168)(115, 179)(116, 182)(120, 184)(122, 185)(123, 180)(124, 181)(125, 178)(126, 174)(127, 171)(133, 170)(137, 166)(144, 149)(145, 177)(147, 173)(152, 172)(154, 188)(157, 187)(158, 175)(160, 161)(163, 192)(164, 167)(193, 205)(194, 311)(195, 345)(196, 290)(197, 329)(198, 246)(199, 274)(200, 219)(201, 259)(202, 258)(203, 272)(204, 213)(206, 361)(207, 359)(208, 327)(210, 295)(211, 232)(212, 243)(214, 229)(215, 240)(216, 366)(217, 333)(218, 377)(220, 310)(221, 298)(222, 236)(223, 281)(224, 350)(225, 349)(226, 315)(228, 268)(230, 276)(231, 379)(233, 356)(234, 238)(235, 319)(237, 370)(239, 293)(241, 338)(242, 260)(244, 255)(245, 358)(247, 381)(248, 262)(249, 326)(250, 373)(251, 321)(252, 308)(253, 367)(254, 332)(256, 270)(257, 334)(261, 304)(263, 371)(264, 355)(265, 312)(266, 296)(267, 322)(269, 294)(271, 375)(273, 303)(275, 340)(278, 337)(279, 341)(280, 343)(282, 384)(283, 306)(284, 347)(285, 300)(286, 354)(287, 292)(289, 383)(291, 352)(297, 335)(299, 376)(301, 346)(302, 323)(305, 364)(307, 313)(309, 330)(314, 328)(316, 318)(317, 348)(320, 353)(324, 339)(325, 374)(336, 369)(342, 372)(344, 351)(357, 360)(362, 380)(363, 378)
c: (2, 4)(3, 7)(5, 12)(6, 15)(8, 20)(9, 22)(10, 24)(11, 27)(13, 32)(14, 34)(16, 38)(17, 40)(18, 42)(19, 45)(21, 50)(23, 53)(25, 56)(26, 59)(28, 63)(29, 65)(30, 67)(31, 70)(33, 74)(35, 77)(36, 79)(37, 82)(41, 90)(43, 55)(44, 92)(46, 94)(47, 96)(48, 97)(49, 99)(51, 102)(52, 104)(54, 107)(57, 73)(58, 106)(60, 117)(61, 119)(62, 87)(64, 121)(66, 124)(68, 127)(69, 129)(71, 131)(72, 133)(75, 135)(76, 137)(78, 118)(80, 126)(84, 125)(85, 145)(86, 146)(88, 147)(89, 149)(91, 151)(93, 154)(95, 123)(98, 158)(100, 159)(101, 161)(103, 108)(105, 115)(109, 113)(110, 157)(111, 165)(112, 167)(114, 138)(122, 176)(128, 140)(130, 183)(132, 185)(134, 179)(136, 156)(139, 172)(141, 186)(142, 187)(143, 168)(144, 160)(148, 189)(150, 169)(153, 190)(162, 178)(163, 164)(166, 174)(170, 182)(171, 181)(173, 184)(175, 177)(180, 188)(191, 192)(193, 248)(194, 307)(195, 379)(196, 259)(197, 215)(198, 245)(199, 203)(200, 289)(201, 219)(202, 266)(204, 349)(205, 344)(206, 329)(207, 357)(208, 229)(209, 305)(210, 317)(211, 306)(212, 347)(213, 327)(214, 236)(216, 225)(217, 286)(218, 350)(220, 314)(221, 242)(222, 257)(223, 316)(224, 298)(226, 360)(227, 297)(228, 361)(230, 335)(231, 246)(232, 375)(233, 254)(234, 258)(235, 334)(237, 263)(238, 265)(239, 250)(240, 367)(241, 337)(243, 384)(244, 312)(247, 256)(249, 341)(251, 343)(252, 284)(253, 299)(255, 309)(260, 383)(261, 318)(262, 275)(264, 315)(267, 273)(268, 353)(269, 363)(270, 311)(271, 285)(272, 323)(274, 291)(276, 364)(277, 304)(278, 381)(279, 310)(280, 348)(281, 368)(282, 358)(283, 359)(287, 320)(288, 301)(290, 377)(292, 376)(293, 313)(294, 380)(295, 378)(296, 370)(300, 355)(302, 336)(303, 382)(308, 345)(319, 366)(321, 372)(322, 346)(324, 332)(325, 354)(326, 351)(328, 340)(330, 371)(331, 333)(338, 373)(339, 369)(342, 362)(352, 356)(365, 374)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 488 ]
384
-1 277 304 338 373
-2 277 250 261 241
-3 345 214 292 328
-4 304 337 239 318
-5 213 290 248 250
-6 319 365 345 357
-7 308 376 236 340
-8 209 355 280 219
-9 368 370 262 273
-10 201 225 241 340
-11 369 326 328 274
-12 377 193 239 327
-13 368 237 248 303
-14 365 235 195 360
-15 308 374 366 207
-16 209 264 200 343
-17 204 196 262 373
-18 364 321 226 383
-19 198 297 232 342
-20 201 300 348 305
-21 378 228 371 284
-22 275 267 281 296
-23 298 331 283 229
-24 216 337 328 219
-25 290 226 325 349
-26 242 342 357 230
-27 291 339 340 351
-28 198 286 355 236
-29 243 320 370 294
-30 266 223 322 340
-31 233 244 258 369
-32 193 281 382 263
-33 287 314 195 229
-34 374 334 379 226
-35 200 244 313 380
-36 364 259 317 285
-37 198 253 321 234
-38 289 315 305 251
-39 288 301 228 361
-40 275 259 338 349
-41 221 331 214 306
-42 276 260 360 372
-43 330 323 291 296
-44 265 269 239 383
-45 375 245 227 362
-46 231 353 310 327
-47 211 246 335 372
-48 325 216 359 252
-49 242 341 257 270
-50 330 295 361 252
-51 205 293 218 208
-52 291 302 313 215
-53 333 224 359 208
-54 365 201 355 366
-55 370 272 371 274
-56 354 377 204 360
-57 330 344 303 316
-58 310 235 247 383
-59 221 335 207 362
-60 231 265 343 240
-61 211 212 204 217
-62 309 342 201 194
-63 245 300 214 217
-64 232 377 378 335
-65 287 380 296 384
-66 276 379 283 251
-67 202 346 316 328
-68 210 226 305 284
-69 342 376 202 358
-70 254 234 312 339
-71 298 236 194 326
-72 320 267 346 197
-73 223 205 371 382
-74 220 320 379 208
-75 358 380 227 271
-76 330 311 259 372
-77 289 312 293 294
-78 288 268 346 206
-79 210 276 271 196
-80 278 348 350 296
-81 265 332 324 238
-82 299 245 258 372
-83 310 279 323 272
-84 300 269 335 384
-85 275 222 299 252
-86 231 257 325 315
-87 255 219 307 362
-88 278 293 261 316
-89 247 291 324 292
-90 242 211 333 236
-91 352 309 266 302
-92 363 238 260 250
-93 199 369 239 329
-94 279 246 213 268
-95 353 233 336 337
-96 231 321 306 230
-97 354 225 283 284
-98 344 366 197 384
-99 221 222 311 249
-100 217 327 207 350
-101 352 323 240 307
-102 344 313 229 350
-103 354 289 334 271
-104 336 293 197 274
-105 308 210 309 206
-106 256 279 334 260
-107 319 374 300 219
-108 200 235 325 285
-109 242 234 378 373
-110 198 341 204 228
-111 224 227 283 294
-112 244 322 249 304
-113 221 258 338 295
-114 352 287 381 339
-115 255 345 317 329
-116 253 299 303 382
-117 246 367 238 251
-118 353 322 301 329
-119 286 347 349 306
-120 311 368 270 281
-121 375 290 295 230
-122 331 271 282 208
-123 254 268 302 241
-124 364 343 359 195
-125 363 243 355 230
-126 280 370 381 218
-127 209 360 317 252
-128 286 375 257 383
-129 266 292 282 362
-130 297 363 211 218
-131 224 214 307 351
-132 232 243 333 213
-133 287 322 215 273
-134 312 280 379 215
-135 297 282 294 285
-136 363 268 347 263
-137 321 270 371 196
-138 320 278 356 369
-139 275 352 344 324
-140 232 222 260 217
-141 220 341 203 302
-142 216 282 329 351
-143 266 224 337 317
-144 199 254 299 270
-145 253 257 262 284
-146 264 222 354 246
-147 223 313 381 318
-148 220 319 289 381
-149 332 376 256 274
-150 309 273 318 351
-151 255 202 356 336
-152 254 233 193 248
-153 264 365 259 216
-154 203 206 250 339
-155 199 203 237 263
-156 353 212 269 237
-157 245 249 349 361
-158 319 243 215 205
-159 286 213 357 218
-160 253 233 311 203
-161 356 367 194 272
-162 364 347 315 295
-163 288 310 238 304
-164 265 277 279 301
-165 297 298 380 359
-166 256 290 251 263
-167 341 277 312 346
-168 210 298 202 241
-169 255 267 326 261
-170 267 292 303 240
-171 209 308 357 348
-172 332 356 205 262
-173 247 281 316 307
-174 343 377 247 237
-175 212 235 193 240
-176 333 358 229 285
-177 334 367 248 347
-178 264 276 212 378
-179 244 348 195 197
-180 332 323 228 338
-181 345 280 305 207
-182 376 367 382 273
-183 269 227 306 350
-184 223 256 368 194
-185 331 375 327 384
-186 199 314 336 249
-187 225 358 326 206
-188 324 272 361 373
-189 200 278 366 314
-190 374 225 315 196
-191 301 258 314 318
-192 220 288 234 261
-193 12 152 32 175
-194 71 62 161 184
-195 33 14 124 179
-196 79 190 137 17
-197 179 104 72 98
-198 110 37 28 19
-199 144 155 93 186
-200 35 189 16 108
-201 62 20 10 54
-202 67 69 168 151
-203 154 155 160 141
-204 110 56 17 61
-205 158 51 73 172
-206 154 187 78 105
-207 100 15 59 181
-208 122 51 74 53
-209 16 127 171 8
-210 68 79 168 105
-211 90 47 61 130
-212 156 178 61 175
-213 132 5 159 94
-214 3 41 63 131
-215 133 134 158 52
-216 24 48 142 153
-217 100 61 63 140
-218 126 159 51 130
-219 24 8 107 87
-220 148 192 74 141
-221 99 113 59 41
-222 99 146 85 140
-223 147 73 30 184
-224 143 111 53 131
-225 187 190 97 10
-226 34 68 25 18
-227 45 111 183 75
-228 110 180 39 21
-229 33 176 23 102
-230 121 26 125 96
-231 46 60 96 86
-232 132 19 140 64
-233 160 95 31 152
-234 37 70 192 109
-235 14 58 108 175
-236 90 71 28 7
-237 155 13 156 174
-238 81 92 117 163
-239 44 12 4 93
-240 101 60 170 175
-241 2 123 168 10
-242 90 26 49 109
-243 132 125 158 29
-244 35 112 179 31
-245 45 157 82 63
-246 47 146 94 117
-247 89 58 173 174
-248 177 13 5 152
-249 99 112 157 186
-250 154 2 92 5
-251 66 166 38 117
-252 48 50 127 85
-253 145 37 116 160
-254 144 123 70 152
-255 169 115 151 87
-256 166 149 106 184
-257 145 49 128 86
-258 113 191 82 31
-259 36 40 76 153
-260 92 106 140 42
-261 88 2 169 192
-262 145 17 172 9
-263 155 166 136 32
-264 178 146 16 153
-265 44 81 60 164
-266 143 91 30 129
-267 22 169 170 72
-268 78 123 136 94
-269 44 156 84 183
-270 144 49 137 120
-271 122 79 103 75
-272 55 188 83 161
-273 133 182 150 9
-274 11 55 104 149
-275 22 40 139 85
-276 66 79 178 42
-277 1 2 167 164
-278 88 189 80 138
-279 83 94 106 164
-280 134 126 181 8
-281 22 173 32 120
-282 122 135 129 142
-283 66 23 111 97
-284 68 145 97 21
-285 176 36 135 108
-286 159 28 128 119
-287 33 133 114 65
-288 78 192 39 163
-289 77 103 38 148
-290 121 166 25 5
-291 89 27 52 43
-292 89 3 170 129
-293 77 88 104 51
-294 77 111 135 29
-295 121 113 50 162
-296 22 80 43 65
-297 165 135 19 130
-298 165 23 168 71
-299 144 82 116 85
-300 84 63 107 20
-301 191 39 118 164
-302 123 91 52 141
-303 13 57 170 116
-304 1 112 4 163
-305 68 38 181 20
-306 183 41 96 119
-307 101 173 87 131
-308 15 105 171 7
-309 91 105 62 150
-310 46 58 83 163
-311 99 160 76 120
-312 77 134 167 70
-313 35 102 147 52
-314 33 189 191 186
-315 190 38 162 86
-316 88 67 57 173
-317 143 36 115 127
-318 4 147 191 150
-319 158 148 6 107
-320 72 138 29 74
-321 37 137 18 96
-322 133 112 30 118
-323 101 180 83 43
-324 89 188 81 139
-325 25 48 86 108
-326 11 187 169 71
-327 12 100 46 185
-328 11 67 24 3
-329 93 115 118 142
-330 57 50 43 76
-331 23 122 41 185
-332 81 180 149 172
-333 132 176 90 53
-334 34 177 103 106
-335 47 59 84 64
-336 104 95 151 186
-337 143 24 4 95
-338 1 113 180 40
-339 154 70 114 27
-340 27 7 30 10
-341 110 167 49 141
-342 69 26 62 19
-343 124 16 60 174
-344 57 102 139 98
-345 3 115 181 6
-346 67 78 167 72
-347 177 136 162 119
-348 80 179 171 20
-349 25 157 40 119
-350 100 80 102 183
-351 27 150 131 142
-352 101 91 114 139
-353 46 156 95 118
-354 56 146 103 97
-355 125 28 8 54
-356 138 161 172 151
-357 26 159 6 171
-358 176 187 69 75
-359 165 124 48 53
-360 56 14 127 42
-361 188 157 39 50
-362 45 59 129 87
-363 92 125 136 130
-364 36 124 18 162
-365 14 6 54 153
-366 189 15 54 98
-367 177 182 117 161
-368 13 184 9 120
-369 11 93 138 31
-370 55 126 29 9
-371 55 137 73 21
-372 47 82 42 76
-373 1 188 17 109
-374 34 190 15 107
-375 121 45 128 185
-376 69 149 182 7
-377 12 56 64 174
-378 178 64 21 109
-379 66 34 134 74
-380 165 35 75 65
-381 114 147 126 148
-382 116 182 73 32
-383 44 58 18 128
-384 84 185 65 98
0

**************