C4graphGraph forms for C4 [ 384, 489 ] = BGCG(UG(ATD[192,44]);K1;4)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 489 ] = BGCG(UG(ATD[192,44]);K1;4).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {155, 219}, {149, 212}, {189, 252}, {187, 250}, {174, 239}, {162, 227}, {162, 224}, {165, 225}, {164, 225}, {132, 194}, {190, 248}, {128, 199}, {177, 246}, {174, 233}, {144, 216}, {186, 242}, {160, 234}, {179, 249}, {176, 250}, {146, 217}, {178, 249}, {158, 213}, {149, 217}, {163, 238}, {145, 222}, {134, 215}, {182, 231}, {157, 204}, {137, 218}, {145, 197}, {147, 199}, {141, 219}, {145, 199}, {167, 255}, {184, 224}, {168, 240}, {182, 239}, {170, 240}, {136, 211}, {131, 223}, {158, 194}, {190, 227}, {140, 210}, {191, 225}, {176, 238}, {164, 250}, {136, 232}, {180, 212}, {130, 225}, {189, 222}, {173, 206}, {135, 228}, {184, 220}, {151, 242}, {152, 253}, {139, 227}, {185, 209}, {150, 254}, {147, 251}, {143, 231}, {132, 238}, {159, 244}, {177, 223}, {181, 219}, {171, 196}, {188, 204}, {190, 206}, {133, 244}, {165, 212}, {148, 229}, {153, 235}, {173, 223}, {155, 233}, {147, 224}, {175, 220}, {174, 221}, {128, 244}, {169, 221}, {137, 252}, {187, 206}, {164, 209}, {147, 229}, {167, 209}, {148, 226}, {129, 246}, {180, 195}, {160, 215}, {157, 229}, {150, 236}, {156, 230}, {176, 203}, {184, 196}, {191, 194}, {160, 222}, {180, 203}, {125, 253}, {119, 246}, {77, 207}, {117, 247}, {118, 244}, {66, 193}, {65, 197}, {83, 214}, {85, 208}, {103, 226}, {75, 205}, {125, 251}, {79, 195}, {82, 194}, {89, 201}, {108, 252}, {118, 230}, {83, 193}, {101, 247}, {117, 231}, {98, 241}, {124, 239}, {109, 249}, {79, 218}, {126, 235}, {105, 254}, {127, 231}, {104, 241}, {71, 221}, {72, 210}, {71, 220}, {76, 215}, {96, 251}, {78, 210}, {90, 198}, {124, 224}, {64, 221}, {82, 207}, {112, 238}, {86, 201}, {87, 247}, {102, 199}, {119, 213}, {123, 216}, {97, 197}, {110, 203}, {78, 232}, {101, 195}, {104, 207}, {80, 248}, {86, 254}, {90, 242}, {69, 239}, {124, 214}, {122, 209}, {95, 243}, {102, 203}, {76, 226}, {100, 202}, {108, 220}, {118, 198}, {68, 245}, {72, 249}, {104, 217}, {68, 240}, {71, 243}, {95, 234}, {100, 210}, {122, 204}, {90, 237}, {127, 200}, {91, 227}, {103, 223}, {122, 195}, {127, 196}, {67, 255}, {102, 218}, {120, 196}, {64, 255}, {87, 232}, {100, 219}, {10, 202}, {11, 200}, {40, 235}, {59, 255}, {45, 232}, {60, 250}, {2, 202}, {36, 236}, {16, 217}, {43, 226}, {54, 253}, {55, 252}, {60, 240}, {61, 241}, {29, 208}, {35, 237}, {3, 211}, {46, 254}, {15, 222}, {38, 247}, {22, 197}, {43, 248}, {6, 211}, {23, 193}, {15, 216}, {21, 205}, {62, 230}, {9, 208}, {49, 237}, {55, 235}, {46, 243}, {47, 242}, {43, 245}, {8, 215}, {54, 233}, {4, 228}, {48, 208}, {17, 241}, {39, 198}, {55, 214}, {52, 213}, {31, 253}, {10, 233}, {59, 216}, {57, 218}, {53, 214}, {46, 202}, {48, 212}, {1, 228}, {42, 207}, {9, 236}, {30, 246}, {17, 248}, {39, 205}, {43, 193}, {6, 234}, {25, 245}, {27, 245}, {35, 205}, {28, 243}, {38, 201}, {26, 234}, {56, 200}, {31, 237}, {32, 211}, {53, 198}, {58, 206}, {19, 230}, {19, 228}, {25, 229}, {40, 213}, {52, 201}, {18, 236}, {4, 251}, {55, 200}, {51, 204}, {8, 264}, {74, 330}, {39, 295}, {34, 290}, {48, 305}, {87, 342}, {70, 327}, {93, 348}, {96, 354}, {18, 273}, {75, 328}, {51, 304}, {32, 291}, {29, 286}, {25, 282}, {23, 276}, {50, 310}, {17, 276}, {67, 326}, {33, 294}, {45, 298}, {127, 376}, {116, 380}, {106, 355}, {123, 370}, {77, 327}, {82, 344}, {79, 325}, {20, 287}, {121, 370}, {94, 338}, {111, 355}, {8, 261}, {69, 328}, {41, 295}, {85, 347}, {74, 324}, {94, 336}, {95, 337}, {11, 260}, {86, 345}, {57, 310}, {31, 272}, {24, 279}, {13, 258}, {105, 377}, {45, 316}, {81, 320}, {60, 301}, {47, 318}, {121, 360}, {120, 362}, {14, 285}, {62, 301}, {108, 383}, {34, 310}, {56, 300}, {38, 306}, {36, 304}, {1, 276}, {122, 367}, {20, 258}, {126, 360}, {27, 268}, {16, 264}, {82, 330}, {33, 313}, {113, 361}, {28, 261}, {87, 334}, {68, 349}, {66, 347}, {44, 309}, {110, 375}, {6, 284}, {40, 306}, {7, 285}, {114, 360}, {117, 367}, {26, 257}, {88, 323}, {83, 328}, {106, 369}, {21, 265}, {37, 313}, {35, 319}, {92, 320}, {62, 291}, {96, 381}, {5, 282}, {63, 288}, {12, 300}, {3, 290}, {56, 281}, {12, 302}, {69, 359}, {24, 314}, {23, 309}, {51, 272}, {84, 375}, {22, 306}, {67, 359}, {38, 258}, {99, 327}, {112, 340}, {91, 381}, {126, 344}, {26, 317}, {84, 371}, {58, 285}, {97, 326}, {121, 350}, {14, 294}, {32, 264}, {93, 373}, {7, 302}, {123, 338}, {4, 302}, {39, 269}, {37, 271}, {19, 313}, {92, 374}, {126, 340}, {10, 289}, {171, 384}, {88, 371}, {91, 368}, {114, 345}, {120, 339}, {116, 344}, {44, 257}, {110, 323}, {17, 319}, {68, 362}, {59, 277}, {113, 351}, {12, 291}, {44, 259}, {30, 305}, {16, 319}, {23, 295}, {99, 339}, {111, 351}, {27, 298}, {47, 286}, {115, 322}, {21, 294}, {83, 352}, {34, 273}, {28, 296}, {11, 318}, {80, 357}, {33, 276}, {9, 319}, {65, 375}, {121, 335}, {20, 291}, {99, 340}, {51, 267}, {107, 339}, {115, 329}, {49, 266}, {57, 258}, {119, 332}, {54, 266}, {106, 342}, {125, 321}, {1, 316}, {42, 279}, {16, 301}, {3, 318}, {2, 316}, {94, 352}, {50, 269}, {98, 349}, {112, 335}, {64, 256}, {77, 269}, {97, 289}, {105, 297}, {123, 315}, {73, 264}, {91, 282}, {118, 311}, {29, 351}, {13, 334}, {108, 303}, {15, 331}, {69, 257}, {101, 289}, {115, 311}, {1, 324}, {66, 263}, {63, 378}, {8, 334}, {52, 370}, {42, 364}, {11, 333}, {99, 293}, {110, 296}, {18, 341}, {61, 378}, {115, 308}, {21, 349}, {24, 336}, {106, 290}, {64, 265}, {85, 284}, {50, 376}, {58, 368}, {54, 380}, {125, 311}, {5, 334}, {63, 372}, {92, 279}, {111, 292}, {117, 318}, {66, 270}, {116, 312}, {41, 356}, {78, 259}, {59, 374}, {62, 368}, {84, 283}, {28, 332}, {109, 317}, {6, 343}, {72, 281}, {30, 335}, {107, 314}, {31, 333}, {76, 286}, {65, 275}, {44, 382}, {22, 325}, {88, 267}, {107, 312}, {4, 336}, {70, 274}, {67, 279}, {49, 357}, {41, 381}, {103, 307}, {26, 335}, {72, 286}, {88, 270}, {65, 278}, {84, 259}, {124, 299}, {93, 261}, {112, 296}, {14, 343}, {80, 265}, {13, 343}, {61, 359}, {50, 360}, {48, 363}, {29, 321}, {58, 358}, {47, 371}, {93, 257}, {22, 331}, {70, 283}, {9, 343}, {85, 267}, {60, 354}, {19, 333}, {89, 262}, {95, 256}, {20, 372}, {30, 382}, {5, 356}, {61, 348}, {52, 341}, {15, 366}, {12, 365}, {113, 272}, {14, 364}, {81, 307}, {13, 366}, {114, 273}, {81, 309}, {113, 277}, {7, 354}, {2, 356}, {79, 297}, {46, 328}, {36, 322}, {25, 383}, {3, 356}, {86, 305}, {45, 330}, {97, 262}, {49, 345}, {98, 266}, {104, 256}, {7, 366}, {78, 295}, {34, 331}, {111, 262}, {94, 308}, {105, 259}, {114, 280}, {32, 331}, {92, 311}, {18, 382}, {70, 298}, {40, 324}, {63, 338}, {98, 271}, {41, 327}, {42, 325}, {74, 293}, {73, 294}, {119, 280}, {5, 373}, {37, 341}, {89, 297}, {107, 283}, {2, 371}, {53, 324}, {71, 309}, {120, 266}, {24, 363}, {96, 275}, {10, 382}, {90, 302}, {101, 273}, {102, 274}, {53, 320}, {35, 341}, {100, 274}, {75, 316}, {33, 345}, {75, 307}, {73, 305}, {27, 354}, {73, 304}, {56, 323}, {89, 290}, {109, 278}, {74, 310}, {76, 304}, {36, 346}, {81, 303}, {103, 281}, {57, 326}, {77, 306}, {109, 274}, {189, 317}, {148, 277}, {142, 268}, {191, 317}, {154, 280}, {138, 265}, {186, 313}, {172, 303}, {152, 283}, {132, 256}, {168, 300}, {136, 268}, {129, 263}, {190, 312}, {140, 267}, {174, 297}, {172, 299}, {167, 288}, {163, 292}, {148, 284}, {149, 285}, {135, 269}, {144, 284}, {183, 315}, {161, 301}, {175, 289}, {144, 287}, {159, 272}, {170, 312}, {168, 315}, {183, 292}, {143, 282}, {144, 261}, {133, 275}, {137, 287}, {156, 260}, {179, 299}, {137, 275}, {179, 296}, {166, 314}, {169, 308}, {155, 314}, {166, 263}, {173, 270}, {37, 384}, {134, 288}, {146, 308}, {156, 315}, {135, 303}, {128, 298}, {188, 278}, {179, 287}, {170, 263}, {162, 268}, {138, 293}, {183, 280}, {165, 278}, {170, 281}, {178, 260}, {185, 271}, {146, 293}, {139, 307}, {145, 299}, {192, 378}, {188, 262}, {151, 300}, {178, 270}, {157, 288}, {187, 260}, {140, 333}, {186, 379}, {151, 342}, {167, 357}, {131, 320}, {165, 358}, {163, 358}, {141, 330}, {173, 362}, {164, 355}, {150, 350}, {175, 359}, {182, 383}, {184, 369}, {161, 363}, {182, 380}, {162, 361}, {185, 370}, {163, 367}, {158, 339}, {172, 353}, {161, 364}, {168, 358}, {159, 336}, {192, 271}, {80, 384}, {171, 379}, {139, 347}, {131, 338}, {152, 329}, {171, 377}, {183, 357}, {130, 337}, {178, 353}, {169, 378}, {146, 326}, {185, 365}, {172, 376}, {160, 372}, {192, 277}, {130, 340}, {187, 365}, {175, 377}, {138, 348}, {139, 349}, {149, 322}, {136, 337}, {140, 342}, {177, 363}, {150, 332}, {157, 321}, {131, 350}, {134, 347}, {130, 348}, {143, 337}, {181, 362}, {155, 379}, {129, 352}, {152, 377}, {142, 367}, {159, 379}, {192, 292}, {166, 322}, {153, 380}, {138, 364}, {188, 346}, {158, 376}, {135, 352}, {153, 369}, {176, 346}, {180, 351}, {133, 361}, {169, 325}, {154, 374}, {143, 355}, {181, 344}, {154, 372}, {134, 361}, {128, 368}, {141, 381}, {132, 373}, {156, 366}, {191, 332}, {116, 384}, {151, 353}, {129, 374}, {154, 365}, {153, 353}, {177, 329}, {166, 350}, {133, 383}, {141, 375}, {142, 373}, {186, 321}, {161, 346}, {181, 329}, {189, 323}, {142, 369} }>;

(II) A more general form is to represent the graph as the orbit of {155, 219} under the group generated by the following permutations:

a: (1, 2)(3, 33)(4, 88)(5, 17)(6, 14)(7, 85)(8, 16)(9, 13)(10, 40)(11, 186)(12, 51)(15, 48)(18, 38)(19, 47)(20, 36)(21, 136)(22, 30)(23, 41)(24, 189)(25, 190)(26, 42)(27, 139)(28, 146)(29, 156)(31, 151)(32, 73)(34, 86)(35, 87)(37, 117)(39, 78)(43, 91)(44, 77)(45, 75)(46, 74)(49, 106)(50, 105)(52, 101)(53, 100)(54, 153)(55, 155)(56, 159)(57, 150)(58, 148)(59, 165)(60, 134)(61, 132)(62, 76)(63, 176)(64, 130)(65, 129)(66, 96)(67, 191)(68, 162)(69, 82)(70, 81)(71, 99)(72, 118)(79, 121)(80, 143)(83, 141)(84, 135)(89, 114)(90, 140)(92, 109)(93, 104)(94, 110)(95, 138)(97, 119)(98, 142)(102, 131)(103, 128)(107, 108)(111, 183)(112, 169)(113, 168)(115, 179)(116, 182)(120, 184)(122, 185)(123, 180)(124, 181)(125, 178)(126, 174)(127, 171)(133, 170)(137, 166)(144, 149)(145, 177)(147, 173)(152, 172)(154, 188)(157, 187)(158, 175)(160, 161)(163, 192)(164, 167)(193, 381)(194, 359)(195, 370)(197, 246)(198, 210)(199, 223)(200, 379)(201, 273)(202, 324)(203, 338)(204, 365)(205, 232)(206, 229)(207, 257)(208, 366)(211, 294)(212, 216)(213, 289)(214, 219)(215, 301)(217, 261)(218, 350)(220, 339)(221, 340)(222, 363)(224, 362)(225, 255)(226, 368)(227, 245)(228, 371)(230, 286)(231, 384)(233, 235)(234, 364)(236, 258)(237, 342)(238, 378)(239, 344)(240, 361)(241, 373)(242, 333)(243, 293)(244, 281)(247, 341)(248, 282)(249, 311)(250, 288)(251, 270)(252, 314)(253, 353)(254, 310)(256, 348)(259, 269)(260, 321)(262, 280)(263, 275)(265, 337)(266, 369)(267, 302)(268, 349)(271, 367)(272, 300)(274, 320)(276, 356)(277, 358)(278, 374)(279, 317)(283, 303)(284, 285)(287, 322)(290, 345)(291, 304)(296, 308)(297, 360)(298, 307)(299, 329)(305, 331)(306, 382)(309, 327)(312, 383)(313, 318)(315, 351)(319, 334)(323, 336)(325, 335)(326, 332)(328, 330)(346, 372)(347, 354)(352, 375)(355, 357)(376, 377)
b: (2, 17)(3, 16)(4, 40)(5, 9)(6, 8)(7, 38)(10, 190)(11, 146)(12, 22)(14, 87)(15, 20)(18, 91)(19, 74)(21, 78)(23, 75)(24, 153)(25, 150)(26, 134)(27, 86)(28, 148)(29, 132)(30, 162)(31, 99)(33, 45)(34, 62)(35, 41)(36, 143)(37, 141)(42, 151)(43, 46)(44, 139)(47, 104)(48, 142)(49, 70)(50, 118)(51, 130)(52, 96)(53, 135)(54, 107)(55, 94)(56, 169)(57, 156)(58, 101)(59, 179)(60, 89)(61, 88)(63, 189)(64, 72)(65, 185)(66, 69)(67, 178)(68, 105)(71, 103)(73, 136)(76, 95)(77, 90)(79, 168)(80, 100)(82, 186)(84, 98)(85, 93)(92, 172)(97, 187)(102, 183)(106, 161)(108, 131)(109, 167)(110, 192)(111, 176)(112, 113)(114, 128)(115, 127)(116, 155)(117, 149)(119, 147)(120, 152)(121, 133)(122, 165)(123, 137)(124, 129)(125, 158)(126, 159)(138, 140)(145, 154)(157, 191)(163, 180)(164, 188)(166, 182)(170, 174)(171, 181)(173, 175)(177, 184)(193, 328)(194, 321)(195, 358)(196, 329)(197, 365)(198, 269)(199, 280)(200, 308)(201, 354)(202, 248)(203, 292)(204, 225)(205, 295)(206, 289)(207, 242)(208, 373)(209, 278)(210, 265)(211, 264)(212, 367)(213, 251)(214, 352)(215, 234)(216, 287)(217, 318)(218, 315)(219, 384)(220, 223)(221, 281)(222, 372)(224, 246)(226, 243)(227, 382)(228, 324)(229, 332)(230, 310)(231, 322)(232, 294)(233, 312)(235, 336)(236, 282)(237, 327)(238, 351)(239, 263)(240, 297)(241, 371)(244, 360)(245, 254)(247, 285)(249, 255)(250, 262)(252, 338)(253, 339)(256, 286)(257, 347)(258, 366)(259, 349)(260, 326)(261, 284)(266, 283)(267, 348)(268, 305)(270, 359)(271, 375)(272, 340)(273, 368)(274, 357)(275, 370)(276, 316)(277, 296)(279, 353)(288, 317)(290, 301)(291, 331)(293, 333)(298, 345)(299, 374)(300, 325)(302, 306)(303, 320)(304, 337)(307, 309)(311, 376)(313, 330)(314, 380)(319, 356)(323, 378)(334, 343)(335, 361)(341, 381)(342, 364)(344, 379)(346, 355)(350, 383)(362, 377)(363, 369)
c: (2, 4)(3, 7)(5, 12)(6, 15)(8, 20)(9, 22)(10, 24)(11, 27)(13, 32)(14, 34)(16, 38)(17, 40)(18, 42)(19, 45)(21, 50)(23, 53)(25, 56)(26, 59)(28, 63)(29, 65)(30, 67)(31, 70)(33, 74)(35, 77)(36, 79)(37, 82)(41, 90)(43, 55)(44, 92)(46, 94)(47, 96)(48, 97)(49, 99)(51, 102)(52, 104)(54, 107)(57, 73)(58, 106)(60, 117)(61, 119)(62, 87)(64, 121)(66, 124)(68, 127)(69, 129)(71, 131)(72, 133)(75, 135)(76, 137)(78, 118)(80, 126)(84, 125)(85, 145)(86, 146)(88, 147)(89, 149)(91, 151)(93, 154)(95, 123)(98, 158)(100, 159)(101, 161)(103, 108)(105, 115)(109, 113)(110, 157)(111, 165)(112, 167)(114, 138)(122, 176)(128, 140)(130, 183)(132, 185)(134, 179)(136, 156)(139, 172)(141, 186)(142, 187)(143, 168)(144, 160)(148, 189)(150, 169)(153, 190)(162, 178)(163, 164)(166, 174)(170, 182)(171, 181)(173, 184)(175, 177)(180, 188)(191, 192)(193, 214)(194, 271)(195, 346)(196, 362)(197, 208)(198, 295)(199, 267)(200, 245)(201, 217)(202, 336)(203, 204)(205, 269)(206, 369)(207, 341)(209, 238)(210, 244)(211, 366)(212, 262)(213, 241)(215, 287)(216, 234)(218, 304)(219, 379)(220, 223)(221, 350)(222, 284)(224, 270)(225, 292)(226, 252)(227, 353)(228, 316)(229, 323)(230, 232)(231, 240)(233, 314)(235, 248)(236, 325)(237, 327)(239, 263)(242, 381)(243, 338)(246, 359)(247, 301)(249, 361)(250, 367)(251, 371)(253, 283)(254, 308)(255, 335)(256, 370)(257, 374)(258, 264)(259, 311)(260, 268)(261, 372)(265, 360)(266, 339)(272, 274)(273, 364)(275, 286)(276, 324)(277, 317)(278, 351)(279, 382)(280, 348)(281, 383)(282, 300)(285, 290)(288, 296)(289, 363)(291, 334)(293, 345)(294, 310)(297, 322)(298, 333)(299, 347)(302, 356)(303, 307)(305, 326)(306, 319)(309, 320)(312, 380)(313, 330)(315, 337)(318, 354)(321, 375)(328, 352)(329, 377)(331, 343)(332, 378)(340, 357)(342, 368)(344, 384)(349, 376)(355, 358)(365, 373)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 489 ]
384
-1 276 324 228 316
-2 202 356 316 371
-3 211 290 356 318
-4 302 336 228 251
-5 334 356 282 373
-6 211 343 234 284
-7 354 366 302 285
-8 264 334 215 261
-9 319 343 236 208
-10 233 289 202 382
-11 200 333 260 318
-12 365 300 291 302
-13 343 366 334 258
-14 364 343 294 285
-15 331 222 366 216
-16 264 319 301 217
-17 319 276 248 241
-18 341 236 382 273
-19 333 313 228 230
-20 287 258 291 372
-21 265 205 294 349
-22 331 325 306 197
-23 276 309 193 295
-24 363 279 314 336
-25 245 282 229 383
-26 234 257 335 317
-27 298 354 245 268
-28 243 332 261 296
-29 286 321 208 351
-30 246 335 305 382
-31 253 333 237 272
-32 264 331 211 291
-33 276 345 313 294
-34 331 310 290 273
-35 319 341 237 205
-36 322 236 346 304
-37 341 313 271 384
-38 201 247 258 306
-39 198 269 205 295
-40 213 235 324 306
-41 356 381 327 295
-42 364 279 325 207
-43 245 193 226 248
-44 309 257 259 382
-45 330 232 298 316
-46 243 254 202 328
-47 242 286 371 318
-48 363 212 305 208
-49 266 345 357 237
-50 310 376 269 360
-51 267 204 304 272
-52 341 201 213 370
-53 198 320 214 324
-54 253 233 266 380
-55 200 235 214 252
-56 200 300 323 281
-57 310 258 326 218
-58 368 358 206 285
-59 374 255 277 216
-60 354 301 250 240
-61 378 348 359 241
-62 301 291 368 230
-63 288 378 338 372
-64 221 265 255 256
-65 275 375 278 197
-66 193 270 347 263
-67 255 279 326 359
-68 245 349 240 362
-69 257 359 239 328
-70 298 283 327 274
-71 220 221 243 309
-72 286 210 281 249
-73 264 304 294 305
-74 330 310 324 293
-75 205 316 328 307
-76 286 215 226 304
-77 269 327 207 306
-78 210 232 259 295
-79 297 325 195 218
-80 265 357 248 384
-81 309 320 303 307
-82 330 344 194 207
-83 352 214 193 328
-84 375 259 283 371
-85 267 347 284 208
-86 254 201 345 305
-87 232 342 334 247
-88 267 323 270 371
-89 297 201 290 262
-90 198 242 302 237
-91 368 227 282 381
-92 374 320 311 279
-93 257 348 261 373
-94 308 352 336 338
-95 243 234 256 337
-96 275 354 381 251
-97 289 326 262 197
-98 266 271 349 241
-99 293 327 339 340
-100 210 202 219 274
-101 289 247 195 273
-102 199 203 218 274
-103 223 226 281 307
-104 256 217 207 241
-105 297 254 377 259
-106 342 355 290 369
-107 312 314 283 339
-108 220 303 383 252
-109 278 249 317 274
-110 375 323 203 296
-111 355 292 262 351
-112 335 238 296 340
-113 277 272 361 351
-114 345 280 360 273
-115 308 311 322 329
-116 344 312 380 384
-117 231 367 247 318
-118 198 244 311 230
-119 332 213 246 280
-120 266 196 339 362
-121 335 370 360 350
-122 209 367 204 195
-123 216 315 370 338
-124 299 224 214 239
-125 253 321 311 251
-126 344 235 360 340
-127 231 200 376 196
-128 199 298 244 368
-129 352 374 246 263
-130 225 337 348 340
-131 320 223 338 350
-132 256 194 238 373
-133 275 244 361 383
-134 288 215 347 361
-135 352 269 303 228
-136 232 211 268 337
-137 275 287 218 252
-138 265 364 293 348
-139 347 227 349 307
-140 210 342 267 333
-141 330 375 381 219
-142 268 367 369 373
-143 231 355 282 337
-144 287 216 261 284
-145 199 222 299 197
-146 308 293 326 217
-147 199 224 229 251
-148 277 226 229 284
-149 212 322 217 285
-150 254 332 236 350
-151 242 342 353 300
-152 253 377 283 329
-153 353 235 369 380
-154 374 365 280 372
-155 233 379 314 219
-156 366 260 315 230
-157 288 321 204 229
-158 376 213 194 339
-159 244 379 336 272
-160 222 234 215 372
-161 363 364 301 346
-162 224 268 227 361
-163 367 292 358 238
-164 209 355 225 250
-165 212 278 225 358
-166 322 314 350 263
-167 209 255 288 357
-168 300 358 315 240
-169 308 221 378 325
-170 312 281 240 263
-171 377 379 196 384
-172 353 299 376 303
-173 223 270 206 362
-174 297 221 233 239
-175 220 289 377 359
-176 203 346 238 250
-177 363 223 246 329
-178 353 270 249 260
-179 287 299 249 296
-180 212 203 195 351
-181 344 219 329 362
-182 231 380 239 383
-183 280 357 292 315
-184 220 224 369 196
-185 209 365 271 370
-186 242 321 313 379
-187 365 260 206 250
-188 278 346 204 262
-189 222 323 317 252
-190 312 248 227 206
-191 332 225 194 317
-192 277 378 292 271
-193 66 23 83 43
-194 132 158 191 82
-195 122 79 101 180
-196 127 171 184 120
-197 22 145 97 65
-198 90 39 118 53
-199 145 102 147 128
-200 11 55 56 127
-201 89 38 52 86
-202 100 2 46 10
-203 110 176 102 180
-204 122 188 157 51
-205 35 39 75 21
-206 187 58 190 173
-207 77 82 104 42
-208 48 29 85 9
-209 122 167 185 164
-210 78 100 72 140
-211 3 136 6 32
-212 165 48 180 149
-213 158 40 52 119
-214 55 124 83 53
-215 134 160 8 76
-216 144 123 15 59
-217 146 16 104 149
-218 57 79 102 137
-219 100 155 181 141
-220 71 184 108 175
-221 169 71 64 174
-222 145 189 15 160
-223 177 103 173 131
-224 124 147 162 184
-225 165 191 130 164
-226 103 148 43 76
-227 91 190 139 162
-228 1 135 4 19
-229 25 157 147 148
-230 156 62 19 118
-231 143 127 182 117
-232 45 78 136 87
-233 155 174 10 54
-234 26 6 160 95
-235 55 126 40 153
-236 36 18 150 9
-237 35 90 49 31
-238 132 176 112 163
-239 69 124 182 174
-240 68 168 60 170
-241 104 17 61 98
-242 90 47 151 186
-243 46 71 28 95
-244 133 159 128 118
-245 68 25 27 43
-246 177 30 129 119
-247 101 38 117 87
-248 80 190 17 43
-249 178 179 72 109
-250 176 187 60 164
-251 4 125 147 96
-252 55 189 137 108
-253 125 31 152 54
-254 46 105 150 86
-255 67 167 59 64
-256 132 104 95 64
-257 44 69 26 93
-258 13 57 38 20
-259 44 78 105 84
-260 11 187 156 178
-261 144 93 28 8
-262 89 111 188 97
-263 66 166 170 129
-264 16 73 8 32
-265 80 138 64 21
-266 49 54 98 120
-267 88 51 85 140
-268 136 27 162 142
-269 77 135 39 50
-270 66 88 178 173
-271 37 192 185 98
-272 113 159 51 31
-273 34 101 114 18
-274 100 102 70 109
-275 133 137 96 65
-276 33 1 23 17
-277 113 59 148 192
-278 165 188 65 109
-279 67 24 92 42
-280 154 114 183 119
-281 56 103 170 72
-282 143 25 91 5
-283 70 84 107 152
-284 144 148 6 85
-285 14 58 149 7
-286 47 72 29 76
-287 144 179 137 20
-288 134 167 157 63
-289 101 97 10 175
-290 34 89 3 106
-291 12 62 20 32
-292 111 192 183 163
-293 99 146 138 74
-294 33 14 73 21
-295 23 78 39 41
-296 110 112 179 28
-297 89 79 105 174
-298 45 70 27 128
-299 145 124 179 172
-300 12 56 168 151
-301 16 60 62 161
-302 12 90 4 7
-303 135 81 172 108
-304 36 51 73 76
-305 48 73 30 86
-306 22 77 38 40
-307 81 103 139 75
-308 146 169 115 94
-309 44 23 81 71
-310 34 57 50 74
-311 92 125 115 118
-312 190 170 116 107
-313 33 37 19 186
-314 155 166 24 107
-315 123 156 168 183
-316 1 45 2 75
-317 189 26 191 109
-318 11 3 47 117
-319 35 16 17 9
-320 81 92 53 131
-321 157 125 29 186
-322 166 36 115 149
-323 88 110 56 189
-324 1 40 74 53
-325 22 79 169 42
-326 67 57 146 97
-327 77 99 70 41
-328 46 69 83 75
-329 177 115 181 152
-330 45 82 74 141
-331 22 34 15 32
-332 191 28 150 119
-333 11 19 140 31
-334 13 5 8 87
-335 121 112 26 30
-336 24 4 159 94
-337 143 136 95 130
-338 123 94 63 131
-339 99 158 107 120
-340 99 112 126 130
-341 35 37 18 52
-342 106 140 151 87
-343 13 14 6 9
-344 82 126 181 116
-345 33 114 49 86
-346 176 188 36 161
-347 66 134 139 85
-348 93 61 138 130
-349 68 139 21 98
-350 121 166 150 131
-351 111 113 180 29
-352 135 83 94 129
-353 178 172 151 153
-354 27 60 7 96
-355 143 111 106 164
-356 2 3 5 41
-357 167 80 49 183
-358 165 58 168 163
-359 67 69 61 175
-360 121 114 126 50
-361 133 134 113 162
-362 68 181 173 120
-363 177 24 48 161
-364 14 138 161 42
-365 154 187 12 185
-366 13 156 15 7
-367 122 117 163 142
-368 58 91 62 128
-369 106 184 142 153
-370 121 123 52 185
-371 88 2 47 84
-372 154 160 63 20
-373 132 5 93 142
-374 154 59 92 129
-375 110 84 141 65
-376 158 50 127 172
-377 105 171 152 175
-378 169 192 61 63
-379 155 159 171 186
-380 116 182 54 153
-381 91 41 96 141
-382 44 18 30 10
-383 133 25 182 108
-384 80 37 116 171
0

**************