C4graphGraph forms for C4 [ 384, 490 ] = BGCG(UG(ATD[192,44]);K1;6)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 490 ] = BGCG(UG(ATD[192,44]);K1;6).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {192, 244}, {192, 252}, {138, 202}, {175, 239}, {167, 231}, {168, 233}, {176, 241}, {152, 218}, {164, 231}, {179, 240}, {143, 203}, {164, 224}, {173, 234}, {180, 243}, {159, 214}, {144, 218}, {154, 208}, {145, 219}, {133, 200}, {139, 197}, {156, 205}, {172, 253}, {157, 204}, {148, 198}, {188, 238}, {146, 193}, {190, 237}, {170, 249}, {130, 214}, {135, 211}, {147, 198}, {185, 236}, {169, 252}, {168, 254}, {130, 213}, {163, 244}, {139, 220}, {158, 198}, {140, 213}, {174, 247}, {165, 254}, {189, 225}, {141, 208}, {170, 247}, {151, 202}, {136, 214}, {191, 225}, {150, 200}, {132, 228}, {184, 216}, {183, 215}, {134, 230}, {147, 242}, {137, 235}, {174, 205}, {177, 210}, {130, 229}, {149, 253}, {188, 212}, {182, 222}, {131, 234}, {184, 209}, {177, 216}, {151, 253}, {145, 250}, {186, 202}, {188, 204}, {135, 246}, {153, 232}, {156, 239}, {161, 212}, {137, 255}, {165, 211}, {152, 239}, {191, 200}, {176, 199}, {172, 219}, {128, 248}, {172, 212}, {129, 249}, {161, 216}, {128, 250}, {167, 221}, {144, 235}, {185, 194}, {145, 237}, {187, 199}, {156, 226}, {132, 251}, {178, 205}, {71, 199}, {79, 207}, {112, 242}, {113, 243}, {84, 215}, {109, 238}, {81, 212}, {88, 221}, {125, 251}, {80, 215}, {93, 218}, {94, 214}, {97, 233}, {75, 194}, {86, 223}, {72, 195}, {91, 208}, {97, 237}, {122, 246}, {124, 240}, {64, 205}, {66, 207}, {124, 241}, {77, 195}, {123, 245}, {108, 227}, {73, 219}, {92, 206}, {95, 203}, {118, 226}, {104, 253}, {65, 215}, {93, 202}, {73, 209}, {125, 229}, {68, 223}, {126, 229}, {89, 197}, {101, 249}, {65, 220}, {84, 201}, {67, 221}, {91, 197}, {96, 255}, {116, 235}, {107, 201}, {114, 208}, {64, 228}, {66, 230}, {92, 251}, {117, 210}, {78, 231}, {86, 255}, {120, 209}, {116, 222}, {77, 230}, {104, 195}, {68, 233}, {86, 248}, {87, 249}, {89, 247}, {78, 252}, {106, 216}, {70, 245}, {83, 224}, {89, 234}, {72, 252}, {109, 217}, {75, 254}, {103, 210}, {122, 207}, {84, 236}, {115, 203}, {122, 194}, {125, 196}, {69, 254}, {77, 246}, {117, 206}, {118, 203}, {90, 228}, {98, 220}, {118, 200}, {127, 193}, {93, 226}, {108, 211}, {38, 230}, {44, 236}, {39, 231}, {50, 243}, {52, 245}, {6, 196}, {58, 248}, {35, 225}, {26, 217}, {53, 241}, {31, 218}, {51, 246}, {15, 201}, {25, 223}, {19, 213}, {36, 227}, {39, 238}, {19, 217}, {22, 220}, {47, 228}, {60, 247}, {1, 204}, {21, 219}, {49, 255}, {46, 224}, {44, 226}, {37, 235}, {23, 199}, {16, 193}, {13, 222}, {35, 240}, {39, 243}, {36, 241}, {46, 248}, {9, 222}, {23, 207}, {60, 224}, {26, 196}, {54, 232}, {29, 195}, {2, 221}, {37, 250}, {8, 232}, {16, 240}, {12, 236}, {47, 206}, {13, 239}, {10, 233}, {48, 211}, {40, 204}, {42, 206}, {18, 250}, {61, 213}, {3, 234}, {30, 242}, {27, 245}, {45, 194}, {18, 227}, {52, 197}, {32, 209}, {52, 198}, {59, 201}, {54, 196}, {38, 210}, {1, 244}, {2, 244}, {4, 242}, {16, 232}, {29, 229}, {38, 223}, {56, 193}, {25, 227}, {21, 238}, {17, 237}, {37, 217}, {5, 251}, {31, 225}, {53, 309}, {54, 310}, {119, 375}, {4, 261}, {16, 273}, {15, 270}, {3, 257}, {68, 326}, {25, 283}, {90, 345}, {117, 374}, {131, 384}, {20, 272}, {102, 354}, {35, 294}, {106, 367}, {111, 362}, {87, 337}, {6, 257}, {72, 335}, {70, 334}, {76, 324}, {74, 322}, {49, 312}, {79, 326}, {108, 357}, {121, 368}, {58, 304}, {113, 379}, {127, 373}, {42, 289}, {74, 321}, {112, 379}, {53, 313}, {67, 335}, {115, 383}, {117, 377}, {9, 263}, {45, 291}, {109, 355}, {51, 316}, {143, 384}, {80, 351}, {95, 336}, {99, 364}, {53, 293}, {71, 343}, {110, 382}, {11, 281}, {17, 258}, {71, 340}, {120, 364}, {9, 284}, {77, 344}, {40, 317}, {17, 263}, {150, 384}, {82, 324}, {43, 317}, {95, 329}, {27, 268}, {84, 323}, {72, 351}, {106, 381}, {58, 290}, {59, 291}, {99, 379}, {24, 257}, {81, 328}, {56, 289}, {42, 307}, {4, 286}, {76, 342}, {28, 262}, {88, 322}, {3, 287}, {69, 345}, {120, 356}, {14, 275}, {34, 319}, {24, 261}, {116, 361}, {70, 344}, {106, 372}, {115, 365}, {1, 286}, {59, 292}, {55, 296}, {18, 269}, {8, 279}, {27, 315}, {107, 331}, {15, 302}, {83, 370}, {44, 269}, {14, 300}, {33, 259}, {19, 305}, {11, 296}, {105, 330}, {28, 312}, {85, 369}, {59, 287}, {29, 313}, {126, 346}, {5, 288}, {83, 374}, {70, 355}, {46, 267}, {43, 268}, {47, 264}, {94, 374}, {114, 346}, {50, 283}, {65, 360}, {127, 342}, {6, 300}, {62, 276}, {94, 372}, {121, 339}, {22, 317}, {14, 290}, {40, 260}, {34, 270}, {6, 299}, {85, 376}, {67, 366}, {60, 273}, {120, 341}, {26, 308}, {63, 272}, {10, 314}, {55, 263}, {98, 338}, {110, 350}, {116, 324}, {7, 310}, {60, 269}, {43, 282}, {5, 311}, {80, 354}, {65, 371}, {51, 256}, {92, 367}, {96, 339}, {115, 327}, {2, 311}, {110, 347}, {112, 325}, {41, 287}, {30, 297}, {55, 256}, {2, 314}, {104, 336}, {15, 310}, {87, 366}, {85, 364}, {82, 363}, {42, 275}, {25, 288}, {87, 365}, {118, 332}, {7, 315}, {22, 298}, {10, 310}, {112, 332}, {91, 358}, {64, 382}, {81, 367}, {48, 271}, {66, 381}, {61, 258}, {99, 348}, {13, 333}, {100, 292}, {102, 294}, {111, 303}, {48, 369}, {57, 376}, {26, 345}, {41, 362}, {89, 282}, {33, 357}, {78, 266}, {76, 264}, {12, 329}, {55, 370}, {48, 373}, {20, 338}, {56, 382}, {97, 295}, {103, 289}, {19, 340}, {5, 333}, {28, 340}, {101, 301}, {32, 361}, {83, 282}, {73, 256}, {43, 354}, {92, 277}, {50, 376}, {68, 270}, {35, 360}, {123, 311}, {4, 329}, {95, 274}, {121, 308}, {17, 350}, {31, 336}, {7, 343}, {12, 349}, {88, 265}, {69, 276}, {111, 318}, {33, 371}, {49, 355}, {105, 315}, {113, 291}, {21, 326}, {127, 300}, {49, 356}, {101, 304}, {126, 299}, {110, 312}, {111, 313}, {119, 288}, {13, 341}, {62, 358}, {34, 378}, {93, 261}, {103, 319}, {40, 369}, {86, 271}, {79, 278}, {56, 353}, {103, 318}, {45, 375}, {67, 281}, {11, 336}, {78, 277}, {57, 354}, {52, 360}, {69, 281}, {61, 353}, {7, 345}, {20, 330}, {124, 290}, {1, 350}, {34, 381}, {20, 331}, {97, 318}, {122, 293}, {32, 320}, {73, 297}, {82, 307}, {104, 265}, {30, 380}, {90, 312}, {121, 283}, {36, 327}, {63, 348}, {105, 266}, {23, 371}, {64, 292}, {54, 338}, {50, 342}, {44, 328}, {33, 325}, {31, 379}, {8, 365}, {66, 295}, {102, 259}, {85, 307}, {96, 262}, {123, 285}, {27, 380}, {46, 329}, {8, 352}, {18, 378}, {94, 311}, {101, 268}, {62, 340}, {107, 257}, {14, 357}, {39, 332}, {21, 382}, {98, 265}, {99, 264}, {10, 358}, {57, 341}, {47, 323}, {12, 353}, {75, 294}, {38, 331}, {24, 373}, {96, 269}, {9, 359}, {79, 289}, {63, 337}, {90, 309}, {100, 267}, {109, 258}, {51, 322}, {82, 291}, {76, 317}, {114, 259}, {119, 262}, {123, 266}, {36, 342}, {58, 328}, {88, 298}, {74, 313}, {119, 260}, {124, 271}, {11, 383}, {62, 330}, {100, 272}, {41, 348}, {75, 318}, {74, 319}, {71, 306}, {113, 260}, {24, 366}, {57, 335}, {30, 358}, {29, 359}, {41, 339}, {98, 280}, {125, 262}, {3, 383}, {81, 301}, {63, 323}, {45, 337}, {28, 352}, {100, 280}, {107, 279}, {23, 362}, {32, 349}, {108, 273}, {37, 347}, {80, 302}, {61, 323}, {102, 280}, {114, 268}, {126, 256}, {22, 361}, {105, 278}, {176, 305}, {187, 314}, {169, 298}, {171, 302}, {155, 285}, {157, 283}, {171, 300}, {173, 298}, {155, 274}, {161, 296}, {158, 279}, {150, 284}, {153, 275}, {142, 261}, {174, 290}, {144, 285}, {137, 263}, {147, 284}, {154, 277}, {141, 285}, {165, 309}, {147, 259}, {134, 279}, {177, 288}, {189, 302}, {178, 295}, {176, 294}, {156, 267}, {192, 344}, {180, 301}, {146, 264}, {168, 306}, {169, 306}, {192, 347}, {136, 277}, {173, 304}, {129, 287}, {181, 299}, {175, 304}, {182, 297}, {143, 303}, {154, 314}, {178, 275}, {191, 286}, {185, 280}, {138, 296}, {187, 281}, {182, 276}, {168, 266}, {158, 316}, {159, 316}, {184, 284}, {151, 306}, {181, 272}, {131, 293}, {188, 282}, {162, 260}, {139, 301}, {135, 303}, {190, 278}, {186, 274}, {140, 292}, {142, 293}, {159, 308}, {148, 319}, {133, 297}, {150, 315}, {187, 278}, {162, 271}, {129, 303}, {178, 258}, {160, 274}, {128, 308}, {189, 265}, {132, 305}, {161, 276}, {146, 295}, {135, 305}, {130, 309}, {132, 316}, {164, 286}, {181, 270}, {183, 267}, {175, 273}, {140, 307}, {148, 299}, {183, 375}, {157, 348}, {149, 343}, {170, 361}, {160, 356}, {190, 378}, {167, 355}, {155, 349}, {180, 370}, {134, 321}, {136, 320}, {138, 322}, {142, 327}, {164, 367}, {172, 359}, {171, 352}, {141, 321}, {148, 344}, {175, 353}, {137, 326}, {182, 377}, {186, 363}, {131, 337}, {162, 368}, {154, 334}, {191, 363}, {138, 351}, {163, 374}, {141, 347}, {169, 383}, {166, 368}, {165, 371}, {155, 333}, {152, 334}, {152, 320}, {189, 357}, {181, 365}, {162, 378}, {91, 384}, {166, 381}, {134, 346}, {183, 362}, {153, 327}, {133, 346}, {166, 377}, {171, 330}, {179, 338}, {160, 324}, {170, 335}, {146, 372}, {167, 321}, {149, 370}, {153, 369}, {180, 350}, {185, 339}, {163, 328}, {166, 333}, {149, 377}, {179, 351}, {133, 360}, {160, 334}, {163, 332}, {184, 343}, {177, 320}, {142, 380}, {139, 376}, {174, 349}, {145, 356}, {190, 331}, {157, 363}, {179, 325}, {128, 375}, {136, 368}, {173, 341}, {140, 372}, {151, 366}, {158, 359}, {143, 373}, {144, 364}, {129, 380}, {159, 352}, {186, 325} }>;

(II) A more general form is to represent the graph as the orbit of {192, 244} under the group generated by the following permutations:

a: (2, 40)(3, 38)(4, 17)(5, 22)(6, 20)(7, 16)(8, 15)(9, 12)(10, 153)(11, 86)(13, 32)(14, 62)(18, 151)(19, 33)(21, 118)(23, 135)(24, 190)(25, 169)(26, 179)(27, 146)(28, 189)(29, 185)(30, 178)(31, 49)(34, 87)(35, 90)(36, 168)(37, 186)(41, 77)(42, 91)(43, 94)(44, 172)(45, 74)(46, 55)(47, 52)(48, 187)(50, 78)(51, 183)(53, 75)(56, 150)(57, 136)(58, 161)(59, 134)(60, 149)(61, 147)(63, 148)(64, 133)(65, 132)(66, 129)(67, 162)(68, 115)(69, 124)(70, 99)(71, 108)(72, 121)(73, 156)(76, 123)(79, 143)(80, 159)(82, 141)(84, 158)(85, 154)(88, 119)(89, 117)(92, 139)(93, 145)(95, 137)(96, 104)(97, 142)(98, 125)(100, 126)(101, 106)(102, 130)(103, 131)(105, 127)(109, 112)(110, 191)(111, 122)(113, 167)(114, 140)(116, 155)(120, 152)(128, 138)(144, 160)(157, 192)(163, 188)(164, 180)(165, 176)(166, 170)(173, 177)(174, 182)(175, 184)(193, 315)(194, 313)(195, 339)(196, 338)(197, 206)(198, 323)(199, 211)(200, 382)(201, 279)(202, 250)(203, 326)(204, 244)(205, 297)(207, 303)(208, 307)(209, 239)(210, 234)(212, 328)(213, 259)(214, 354)(215, 316)(216, 304)(217, 325)(218, 356)(219, 226)(220, 251)(221, 260)(222, 349)(223, 383)(224, 370)(225, 312)(227, 306)(228, 360)(229, 280)(230, 287)(231, 243)(232, 310)(233, 327)(235, 274)(236, 359)(237, 261)(238, 332)(240, 345)(241, 254)(242, 258)(245, 264)(246, 362)(247, 377)(248, 296)(249, 381)(252, 283)(253, 269)(255, 336)(256, 267)(257, 331)(262, 265)(263, 329)(266, 342)(268, 372)(270, 365)(271, 281)(272, 299)(273, 343)(275, 358)(276, 290)(277, 376)(278, 373)(282, 374)(284, 353)(285, 324)(286, 350)(288, 298)(289, 384)(291, 321)(292, 346)(293, 318)(294, 309)(295, 380)(300, 330)(301, 367)(302, 352)(305, 371)(308, 351)(311, 317)(314, 369)(319, 337)(320, 341)(322, 375)(333, 361)(334, 364)(335, 368)(340, 357)(344, 348)(347, 363)(355, 379)(366, 378)
b: (2, 4)(3, 7)(5, 12)(6, 15)(8, 20)(9, 22)(10, 24)(11, 27)(13, 32)(14, 34)(16, 38)(17, 40)(18, 42)(19, 45)(21, 50)(23, 53)(25, 56)(26, 59)(28, 63)(29, 65)(30, 67)(31, 70)(33, 74)(35, 77)(36, 79)(37, 82)(41, 90)(43, 55)(44, 92)(46, 94)(47, 96)(48, 97)(49, 99)(51, 102)(52, 104)(54, 107)(57, 73)(58, 106)(60, 117)(61, 119)(62, 87)(64, 121)(66, 124)(68, 127)(69, 129)(71, 131)(72, 133)(75, 135)(76, 137)(78, 118)(80, 126)(84, 125)(85, 145)(86, 146)(88, 147)(89, 149)(91, 151)(93, 154)(95, 123)(98, 158)(100, 159)(101, 161)(103, 108)(105, 115)(109, 113)(110, 157)(111, 165)(112, 167)(114, 138)(122, 176)(128, 140)(130, 183)(132, 185)(134, 179)(136, 156)(139, 172)(141, 186)(142, 187)(143, 168)(144, 160)(148, 189)(150, 169)(153, 190)(162, 178)(163, 164)(166, 174)(170, 182)(171, 181)(173, 184)(175, 177)(180, 188)(191, 192)(193, 223)(194, 305)(195, 360)(196, 201)(197, 253)(198, 265)(199, 293)(200, 252)(202, 208)(203, 266)(204, 350)(205, 368)(206, 269)(207, 241)(209, 341)(210, 273)(211, 318)(212, 301)(213, 375)(214, 267)(215, 229)(216, 304)(217, 291)(218, 334)(219, 376)(220, 359)(221, 242)(222, 361)(224, 374)(225, 344)(226, 277)(227, 289)(228, 339)(230, 240)(231, 332)(232, 331)(233, 373)(234, 343)(235, 324)(236, 251)(237, 369)(238, 243)(239, 320)(244, 286)(245, 336)(246, 294)(247, 377)(248, 372)(249, 276)(250, 307)(254, 303)(255, 264)(256, 354)(257, 310)(258, 260)(259, 322)(261, 314)(262, 323)(263, 317)(268, 296)(270, 300)(271, 295)(272, 352)(274, 285)(275, 378)(278, 327)(279, 338)(280, 316)(281, 380)(282, 370)(283, 382)(284, 298)(287, 345)(288, 353)(290, 381)(292, 308)(297, 335)(299, 302)(306, 384)(309, 362)(311, 329)(312, 348)(313, 371)(315, 383)(319, 357)(321, 325)(326, 342)(328, 367)(330, 365)(333, 349)(337, 340)(346, 351)(347, 363)(355, 379)(356, 364)(358, 366)
c: (1, 2)(3, 33)(4, 88)(5, 17)(6, 14)(7, 85)(8, 16)(9, 13)(10, 40)(11, 186)(12, 51)(15, 48)(18, 38)(19, 47)(20, 36)(21, 136)(22, 30)(23, 41)(24, 189)(25, 190)(26, 42)(27, 139)(28, 146)(29, 156)(31, 151)(32, 73)(34, 86)(35, 87)(37, 117)(39, 78)(43, 91)(44, 77)(45, 75)(46, 74)(49, 106)(50, 105)(52, 101)(53, 100)(54, 153)(55, 155)(56, 159)(57, 150)(58, 148)(59, 165)(60, 134)(61, 132)(62, 76)(63, 176)(64, 130)(65, 129)(66, 96)(67, 191)(68, 162)(69, 82)(70, 81)(71, 99)(72, 118)(79, 121)(80, 143)(83, 141)(84, 135)(89, 114)(90, 140)(92, 109)(93, 104)(94, 110)(95, 138)(97, 119)(98, 142)(102, 131)(103, 128)(107, 108)(111, 183)(112, 169)(113, 168)(115, 179)(116, 182)(120, 184)(122, 185)(123, 180)(124, 181)(125, 178)(126, 174)(127, 171)(133, 170)(137, 166)(144, 149)(145, 177)(147, 173)(152, 172)(154, 188)(157, 187)(158, 175)(160, 161)(163, 192)(164, 167)(193, 352)(195, 226)(196, 275)(197, 268)(198, 304)(199, 348)(200, 335)(201, 211)(202, 336)(203, 351)(204, 314)(205, 229)(206, 217)(207, 339)(208, 282)(210, 250)(212, 334)(213, 228)(214, 382)(215, 303)(216, 356)(218, 253)(219, 320)(220, 380)(221, 286)(223, 378)(224, 321)(225, 366)(227, 331)(230, 269)(233, 260)(234, 259)(235, 377)(236, 246)(237, 288)(238, 277)(239, 359)(240, 365)(241, 272)(242, 298)(243, 266)(245, 301)(247, 346)(248, 319)(249, 360)(251, 258)(252, 332)(254, 291)(255, 381)(256, 349)(257, 357)(261, 265)(262, 295)(263, 333)(264, 340)(267, 313)(270, 271)(273, 279)(274, 296)(276, 324)(278, 283)(280, 293)(281, 363)(284, 341)(285, 370)(287, 371)(289, 308)(290, 299)(292, 309)(294, 337)(297, 361)(302, 373)(305, 323)(306, 379)(307, 345)(310, 369)(311, 350)(312, 372)(315, 376)(316, 353)(317, 358)(318, 375)(322, 329)(325, 383)(326, 368)(327, 338)(328, 344)(330, 342)(343, 364)(347, 374)(354, 384)(355, 367)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 490 ]
384
-1 286 244 204 350
-2 221 244 311 314
-3 287 234 257 383
-4 242 286 261 329
-5 288 311 333 251
-6 299 300 257 196
-7 310 343 345 315
-8 352 232 365 279
-9 222 359 284 263
-10 233 310 314 358
-11 281 336 383 296
-12 353 236 349 329
-13 341 222 333 239
-14 275 300 290 357
-15 310 201 302 270
-16 232 193 240 273
-17 258 237 350 263
-18 378 269 227 250
-19 213 217 305 340
-20 330 331 272 338
-21 238 326 382 219
-22 220 298 317 361
-23 199 371 207 362
-24 366 257 261 373
-25 288 223 227 283
-26 308 345 217 196
-27 245 268 380 315
-28 352 312 262 340
-29 313 359 195 229
-30 242 297 358 380
-31 225 379 336 218
-32 209 320 349 361
-33 357 259 325 371
-34 319 378 270 381
-35 225 294 360 240
-36 342 227 327 241
-37 235 347 217 250
-38 210 331 223 230
-39 231 243 332 238
-40 204 369 260 317
-41 287 348 339 362
-42 275 289 206 307
-43 354 268 282 317
-44 236 269 226 328
-45 375 291 194 337
-46 267 224 248 329
-47 264 323 206 228
-48 211 369 271 373
-49 255 355 312 356
-50 243 342 376 283
-51 256 322 246 316
-52 198 245 360 197
-53 309 313 293 241
-54 232 310 338 196
-55 256 370 263 296
-56 353 289 193 382
-57 341 354 376 335
-58 290 248 304 328
-59 287 201 291 292
-60 224 247 269 273
-61 353 213 323 258
-62 330 276 358 340
-63 323 337 348 272
-64 292 205 228 382
-65 220 215 360 371
-66 381 207 295 230
-67 221 366 335 281
-68 233 223 270 326
-69 254 276 345 281
-70 245 344 355 334
-71 199 343 306 340
-72 335 195 252 351
-73 209 297 256 219
-74 319 321 322 313
-75 254 194 294 318
-76 264 342 324 317
-77 344 246 195 230
-78 231 266 277 252
-79 278 289 326 207
-80 354 302 215 351
-81 212 301 367 328
-82 363 291 324 307
-83 374 224 282 370
-84 201 323 236 215
-85 364 376 369 307
-86 255 223 248 271
-87 365 366 249 337
-88 221 265 298 322
-89 234 247 282 197
-90 309 312 345 228
-91 358 197 208 384
-92 277 367 206 251
-93 202 226 261 218
-94 374 311 214 372
-95 203 336 274 329
-96 255 269 262 339
-97 233 237 295 318
-98 220 265 280 338
-99 264 364 379 348
-100 267 280 292 272
-101 268 301 249 304
-102 354 280 259 294
-103 319 210 289 318
-104 253 265 336 195
-105 330 266 278 315
-106 367 216 381 372
-107 331 201 257 279
-108 211 357 227 273
-109 355 258 238 217
-110 312 347 382 350
-111 313 303 318 362
-112 242 332 379 325
-113 243 291 379 260
-114 268 346 259 208
-115 365 203 327 383
-116 222 235 324 361
-117 374 210 377 206
-118 200 332 203 226
-119 375 288 260 262
-120 209 341 364 356
-121 308 368 283 339
-122 246 194 293 207
-123 266 245 311 285
-124 290 271 240 241
-125 262 229 196 251
-126 299 256 346 229
-127 342 300 193 373
-128 308 375 248 250
-129 287 303 380 249
-130 309 213 214 229
-131 234 293 337 384
-132 228 305 316 251
-133 297 200 346 360
-134 321 279 346 230
-135 211 246 303 305
-136 320 277 214 368
-137 255 235 326 263
-138 322 202 296 351
-139 220 376 301 197
-140 213 292 372 307
-141 321 347 208 285
-142 380 293 261 327
-143 203 303 373 384
-144 364 235 218 285
-145 356 237 250 219
-146 264 193 295 372
-147 198 242 259 284
-148 198 319 299 344
-149 253 343 377 370
-150 200 315 284 384
-151 253 366 202 306
-152 320 334 239 218
-153 275 232 369 327
-154 277 334 314 208
-155 333 349 274 285
-156 267 226 205 239
-157 363 204 348 283
-158 198 279 359 316
-159 308 352 214 316
-160 334 356 324 274
-161 276 212 216 296
-162 378 368 260 271
-163 374 244 332 328
-164 231 286 224 367
-165 254 309 211 371
-166 333 377 368 381
-167 231 221 321 355
-168 254 233 266 306
-169 298 306 383 252
-170 247 335 249 361
-171 330 352 300 302
-172 253 212 359 219
-173 341 298 234 304
-174 290 247 205 349
-175 353 304 239 273
-176 199 294 305 241
-177 210 320 288 216
-178 275 258 205 295
-179 325 338 240 351
-180 243 301 370 350
-181 299 365 270 272
-182 297 276 222 377
-183 375 267 215 362
-184 209 343 216 284
-185 236 280 194 339
-186 363 202 325 274
-187 199 278 281 314
-188 212 204 238 282
-189 265 225 302 357
-190 331 278 378 237
-191 286 363 200 225
-192 244 344 347 252
-193 56 146 16 127
-194 45 122 75 185
-195 77 104 72 29
-196 26 125 6 54
-197 89 91 139 52
-198 147 158 148 52
-199 176 187 23 71
-200 133 191 150 118
-201 15 59 84 107
-202 93 138 151 186
-203 143 115 95 118
-204 1 188 157 40
-205 156 178 64 174
-206 47 92 117 42
-207 66 23 122 79
-208 154 91 114 141
-209 73 184 32 120
-210 177 103 38 117
-211 165 135 48 108
-212 188 81 161 172
-213 61 19 140 130
-214 136 159 94 130
-215 80 84 183 65
-216 177 106 161 184
-217 26 37 19 109
-218 144 93 31 152
-219 145 73 172 21
-220 22 139 65 98
-221 88 67 2 167
-222 13 116 182 9
-223 68 25 38 86
-224 46 60 83 164
-225 35 189 191 31
-226 44 156 93 118
-227 25 36 18 108
-228 132 90 47 64
-229 125 126 29 130
-230 66 77 134 38
-231 78 167 39 164
-232 16 8 54 153
-233 68 168 97 10
-234 89 3 173 131
-235 144 37 137 116
-236 44 12 84 185
-237 145 190 17 97
-238 188 39 21 109
-239 13 156 152 175
-240 35 124 179 16
-241 176 36 124 53
-242 112 4 147 30
-243 113 180 39 50
-244 1 2 192 163
-245 123 70 27 52
-246 77 122 135 51
-247 89 60 170 174
-248 46 58 128 86
-249 101 170 129 87
-250 145 37 18 128
-251 132 92 125 5
-252 78 169 192 72
-253 104 149 172 151
-254 165 69 168 75
-255 49 137 96 86
-256 55 126 51 73
-257 24 3 6 107
-258 178 17 61 109
-259 33 102 114 147
-260 113 40 162 119
-261 24 4 93 142
-262 125 28 96 119
-263 55 137 17 9
-264 99 47 146 76
-265 88 189 104 98
-266 78 123 168 105
-267 100 46 156 183
-268 101 114 27 43
-269 44 60 18 96
-270 34 68 15 181
-271 124 48 162 86
-272 100 181 63 20
-273 16 60 108 175
-274 155 160 95 186
-275 178 14 42 153
-276 69 182 62 161
-277 154 78 92 136
-278 187 79 190 105
-279 134 158 8 107
-280 100 102 185 98
-281 11 187 67 69
-282 89 188 83 43
-283 121 25 157 50
-284 147 150 184 9
-285 144 155 123 141
-286 1 4 191 164
-287 3 59 41 129
-288 177 25 5 119
-289 56 79 103 42
-290 14 58 124 174
-291 45 113 59 82
-292 100 59 140 64
-293 122 53 131 142
-294 176 35 102 75
-295 66 178 146 97
-296 11 55 138 161
-297 133 182 73 30
-298 22 88 169 173
-299 126 148 181 6
-300 14 6 127 171
-301 101 81 180 139
-302 189 80 15 171
-303 143 111 135 129
-304 101 58 173 175
-305 132 176 135 19
-306 168 169 71 151
-307 82 85 140 42
-308 121 26 159 128
-309 165 90 53 130
-310 15 7 10 54
-311 2 123 5 94
-312 110 90 49 28
-313 111 29 74 53
-314 154 187 2 10
-315 27 105 7 150
-316 132 158 159 51
-317 22 40 43 76
-318 111 103 75 97
-319 34 103 148 74
-320 177 136 152 32
-321 134 167 74 141
-322 88 138 51 74
-323 47 61 84 63
-324 82 116 160 76
-325 33 112 179 186
-326 68 79 137 21
-327 36 115 142 153
-328 44 58 81 163
-329 12 46 4 95
-330 105 171 62 20
-331 190 38 107 20
-332 112 39 118 163
-333 155 166 13 5
-334 154 70 160 152
-335 67 57 170 72
-336 11 104 95 31
-337 45 63 87 131
-338 179 20 54 98
-339 121 41 96 185
-340 71 28 62 19
-341 13 57 173 120
-342 36 50 127 76
-343 71 149 7 184
-344 77 70 148 192
-345 90 69 26 7
-346 133 134 114 126
-347 110 37 192 141
-348 99 157 41 63
-349 12 155 174 32
-350 110 1 180 17
-351 80 179 72 138
-352 159 28 171 8
-353 12 56 61 175
-354 57 80 102 43
-355 167 70 49 109
-356 145 49 160 120
-357 33 189 14 108
-358 91 62 30 10
-359 158 29 172 9
-360 133 35 52 65
-361 22 170 116 32
-362 23 111 183 41
-363 157 191 82 186
-364 99 144 85 120
-365 115 181 8 87
-366 67 24 151 87
-367 81 92 106 164
-368 121 166 136 162
-369 48 40 85 153
-370 55 180 83 149
-371 33 165 23 65
-372 146 94 106 140
-373 143 24 48 127
-374 83 94 117 163
-375 45 128 183 119
-376 57 50 139 85
-377 166 149 182 117
-378 34 190 18 162
-379 99 112 113 31
-380 27 30 129 142
-381 66 34 166 106
-382 110 56 64 21
-383 11 3 169 115
-384 143 91 150 131
0

**************