C4graphGraph forms for C4 [ 384, 509 ] = BGCG(UG(ATD[192,151]);K1;{8,12})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 509 ] = BGCG(UG(ATD[192,151]);K1;{8,12}).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {192, 236}, {192, 249}, {152, 216}, {147, 210}, {161, 224}, {132, 198}, {172, 239}, {178, 241}, {150, 209}, {165, 226}, {142, 198}, {153, 209}, {147, 218}, {150, 223}, {181, 255}, {183, 253}, {158, 213}, {189, 246}, {130, 206}, {187, 247}, {154, 214}, {164, 233}, {167, 233}, {179, 253}, {160, 239}, {177, 254}, {165, 234}, {145, 193}, {180, 229}, {134, 212}, {172, 254}, {159, 205}, {158, 204}, {150, 194}, {165, 243}, {173, 250}, {140, 212}, {170, 242}, {129, 216}, {135, 222}, {151, 205}, {184, 226}, {136, 211}, {153, 194}, {132, 218}, {143, 209}, {157, 252}, {181, 212}, {185, 219}, {143, 236}, {149, 246}, {159, 251}, {136, 237}, {190, 219}, {173, 200}, {141, 235}, {146, 245}, {191, 216}, {176, 215}, {154, 253}, {139, 227}, {182, 222}, {173, 197}, {155, 243}, {152, 241}, {138, 224}, {139, 224}, {139, 229}, {170, 196}, {138, 229}, {142, 225}, {163, 211}, {175, 223}, {163, 210}, {133, 247}, {171, 216}, {161, 213}, {182, 194}, {140, 249}, {172, 217}, {164, 209}, {131, 245}, {190, 200}, {135, 240}, {155, 226}, {186, 195}, {169, 211}, {160, 219}, {151, 233}, {183, 201}, {75, 203}, {92, 220}, {76, 204}, {99, 227}, {100, 228}, {113, 241}, {121, 249}, {87, 214}, {88, 217}, {117, 247}, {125, 255}, {83, 208}, {86, 210}, {96, 229}, {95, 217}, {114, 244}, {116, 242}, {76, 203}, {106, 237}, {82, 218}, {86, 222}, {111, 231}, {98, 235}, {68, 206}, {88, 210}, {107, 225}, {88, 211}, {98, 238}, {70, 214}, {82, 194}, {77, 221}, {119, 230}, {122, 235}, {88, 202}, {99, 241}, {112, 227}, {115, 224}, {80, 196}, {111, 251}, {122, 238}, {114, 231}, {80, 198}, {121, 238}, {127, 232}, {81, 200}, {75, 215}, {97, 252}, {103, 248}, {123, 228}, {85, 245}, {101, 197}, {116, 212}, {95, 254}, {108, 205}, {113, 208}, {77, 238}, {105, 202}, {109, 206}, {83, 247}, {121, 221}, {84, 242}, {76, 228}, {100, 204}, {127, 214}, {66, 232}, {72, 226}, {97, 204}, {74, 250}, {115, 195}, {77, 255}, {78, 252}, {73, 250}, {89, 234}, {99, 208}, {84, 225}, {120, 207}, {71, 254}, {110, 215}, {126, 196}, {69, 248}, {78, 243}, {73, 244}, {74, 244}, {10, 202}, {5, 199}, {25, 218}, {40, 236}, {62, 251}, {51, 245}, {18, 213}, {34, 232}, {23, 220}, {45, 230}, {9, 197}, {60, 240}, {19, 222}, {30, 208}, {42, 228}, {6, 201}, {20, 219}, {24, 200}, {39, 246}, {43, 250}, {21, 199}, {33, 243}, {25, 203}, {10, 217}, {43, 248}, {38, 242}, {52, 225}, {9, 223}, {45, 251}, {41, 255}, {2, 213}, {62, 231}, {63, 230}, {13, 215}, {27, 193}, {4, 223}, {50, 233}, {22, 202}, {24, 197}, {41, 244}, {16, 206}, {22, 201}, {47, 240}, {39, 248}, {35, 252}, {45, 205}, {47, 207}, {38, 199}, {8, 234}, {33, 195}, {19, 240}, {36, 193}, {57, 220}, {1, 231}, {40, 193}, {53, 220}, {37, 207}, {3, 239}, {49, 221}, {48, 221}, {29, 236}, {31, 237}, {60, 207}, {12, 249}, {48, 198}, {28, 235}, {17, 232}, {49, 203}, {6, 253}, {17, 237}, {59, 199}, {56, 196}, {26, 230}, {19, 239}, {11, 246}, {52, 201}, {23, 234}, {61, 195}, {28, 227}, {10, 266}, {31, 287}, {10, 267}, {86, 343}, {60, 317}, {12, 269}, {53, 311}, {79, 333}, {72, 331}, {86, 341}, {123, 383}, {105, 364}, {133, 384}, {42, 300}, {87, 337}, {4, 259}, {56, 319}, {39, 288}, {107, 364}, {27, 275}, {6, 271}, {68, 333}, {59, 306}, {51, 314}, {24, 273}, {18, 283}, {96, 361}, {44, 294}, {94, 340}, {124, 374}, {35, 296}, {14, 258}, {85, 345}, {57, 309}, {4, 265}, {19, 286}, {15, 258}, {1, 271}, {44, 290}, {5, 267}, {112, 382}, {31, 272}, {20, 260}, {46, 318}, {105, 377}, {126, 366}, {120, 361}, {145, 384}, {26, 264}, {82, 320}, {68, 342}, {107, 377}, {58, 297}, {90, 334}, {24, 269}, {91, 334}, {62, 299}, {123, 366}, {15, 281}, {115, 357}, {123, 365}, {41, 305}, {51, 298}, {60, 294}, {102, 380}, {71, 348}, {106, 369}, {54, 298}, {95, 323}, {118, 362}, {20, 265}, {65, 348}, {32, 317}, {5, 283}, {61, 291}, {9, 279}, {55, 296}, {7, 295}, {59, 283}, {58, 282}, {28, 316}, {23, 311}, {38, 263}, {85, 375}, {96, 322}, {37, 262}, {71, 356}, {54, 277}, {52, 279}, {59, 287}, {81, 373}, {2, 295}, {27, 318}, {55, 273}, {64, 358}, {61, 283}, {119, 337}, {47, 264}, {124, 347}, {125, 346}, {28, 308}, {78, 358}, {7, 302}, {83, 378}, {108, 325}, {121, 336}, {64, 362}, {92, 374}, {29, 310}, {73, 354}, {111, 324}, {117, 350}, {23, 315}, {77, 353}, {94, 370}, {63, 274}, {69, 360}, {93, 368}, {31, 305}, {2, 301}, {15, 319}, {89, 361}, {65, 369}, {127, 335}, {18, 291}, {72, 377}, {66, 371}, {97, 336}, {105, 344}, {108, 349}, {111, 350}, {117, 324}, {8, 314}, {79, 381}, {65, 371}, {46, 284}, {25, 299}, {96, 338}, {103, 341}, {13, 318}, {74, 377}, {108, 351}, {115, 320}, {16, 292}, {1, 311}, {106, 348}, {113, 327}, {20, 291}, {92, 363}, {67, 372}, {106, 349}, {127, 328}, {11, 307}, {63, 263}, {30, 294}, {17, 297}, {68, 381}, {14, 308}, {30, 292}, {120, 322}, {9, 306}, {91, 352}, {81, 362}, {58, 257}, {21, 302}, {109, 342}, {114, 329}, {122, 321}, {32, 284}, {67, 383}, {63, 259}, {101, 345}, {37, 280}, {78, 371}, {46, 275}, {53, 266}, {7, 327}, {45, 365}, {36, 357}, {91, 282}, {85, 276}, {70, 263}, {58, 379}, {55, 374}, {126, 319}, {50, 368}, {14, 333}, {114, 305}, {3, 327}, {87, 275}, {49, 373}, {35, 359}, {30, 346}, {5, 321}, {119, 307}, {35, 358}, {70, 259}, {48, 373}, {57, 383}, {80, 278}, {42, 365}, {69, 258}, {1, 329}, {93, 277}, {64, 264}, {47, 358}, {84, 285}, {104, 289}, {118, 316}, {125, 311}, {2, 329}, {118, 317}, {17, 349}, {73, 261}, {110, 290}, {22, 347}, {57, 372}, {48, 381}, {37, 360}, {4, 330}, {54, 376}, {42, 356}, {22, 344}, {97, 303}, {39, 360}, {79, 256}, {46, 353}, {90, 266}, {98, 306}, {104, 312}, {118, 294}, {21, 324}, {90, 267}, {124, 301}, {33, 371}, {93, 271}, {67, 273}, {49, 355}, {11, 344}, {90, 270}, {126, 298}, {70, 275}, {89, 268}, {13, 347}, {94, 264}, {18, 325}, {101, 306}, {112, 295}, {61, 357}, {56, 354}, {33, 378}, {29, 321}, {55, 363}, {34, 382}, {102, 314}, {50, 367}, {51, 366}, {80, 270}, {102, 312}, {113, 302}, {15, 367}, {100, 260}, {120, 280}, {8, 361}, {21, 375}, {38, 324}, {40, 331}, {44, 328}, {87, 307}, {72, 300}, {101, 257}, {104, 268}, {119, 274}, {53, 339}, {74, 300}, {112, 278}, {71, 288}, {11, 355}, {36, 332}, {26, 370}, {75, 290}, {92, 309}, {82, 315}, {81, 312}, {76, 293}, {103, 269}, {110, 260}, {66, 297}, {67, 296}, {62, 338}, {116, 280}, {34, 335}, {14, 352}, {75, 293}, {94, 304}, {16, 383}, {52, 347}, {54, 326}, {122, 267}, {29, 367}, {91, 297}, {36, 342}, {125, 271}, {41, 346}, {50, 321}, {109, 286}, {110, 285}, {116, 263}, {8, 380}, {66, 310}, {43, 351}, {12, 376}, {84, 289}, {99, 278}, {6, 368}, {44, 346}, {34, 340}, {102, 272}, {103, 273}, {26, 365}, {83, 292}, {65, 310}, {56, 335}, {93, 298}, {3, 379}, {89, 289}, {104, 272}, {7, 382}, {100, 285}, {109, 276}, {25, 355}, {69, 319}, {95, 293}, {13, 374}, {64, 316}, {107, 279}, {124, 256}, {32, 349}, {98, 287}, {12, 370}, {43, 341}, {27, 357}, {16, 366}, {3, 380}, {79, 304}, {32, 351}, {137, 265}, {149, 276}, {150, 279}, {144, 274}, {135, 260}, {160, 291}, {156, 287}, {190, 312}, {177, 313}, {137, 259}, {179, 313}, {137, 258}, {192, 331}, {174, 293}, {128, 268}, {188, 304}, {156, 272}, {152, 277}, {182, 315}, {135, 265}, {176, 318}, {136, 262}, {162, 301}, {191, 303}, {155, 266}, {177, 288}, {167, 309}, {186, 296}, {142, 278}, {153, 257}, {148, 268}, {187, 290}, {167, 317}, {175, 308}, {145, 269}, {189, 288}, {134, 280}, {165, 315}, {185, 281}, {146, 307}, {151, 309}, {188, 286}, {162, 256}, {154, 313}, {170, 270}, {189, 281}, {130, 292}, {162, 261}, {40, 384}, {188, 276}, {134, 302}, {171, 257}, {191, 277}, {176, 282}, {148, 313}, {191, 274}, {163, 270}, {130, 300}, {133, 299}, {132, 299}, {169, 262}, {159, 304}, {142, 289}, {157, 301}, {141, 316}, {168, 281}, {158, 303}, {180, 262}, {192, 370}, {176, 261}, {170, 285}, {162, 282}, {131, 314}, {136, 305}, {143, 310}, {157, 295}, {166, 284}, {167, 284}, {188, 256}, {184, 261}, {160, 286}, {139, 308}, {144, 303}, {153, 345}, {186, 378}, {187, 378}, {168, 362}, {178, 369}, {147, 341}, {166, 353}, {155, 339}, {138, 323}, {128, 330}, {146, 345}, {159, 340}, {131, 335}, {143, 322}, {179, 382}, {157, 336}, {149, 344}, {141, 323}, {169, 359}, {129, 334}, {183, 376}, {171, 379}, {151, 325}, {189, 367}, {174, 380}, {154, 328}, {147, 320}, {152, 332}, {181, 353}, {164, 368}, {174, 379}, {133, 338}, {158, 329}, {156, 326}, {184, 354}, {177, 363}, {138, 337}, {140, 343}, {128, 348}, {180, 360}, {140, 336}, {141, 337}, {168, 373}, {186, 359}, {148, 330}, {178, 364}, {171, 372}, {190, 350}, {129, 352}, {182, 343}, {161, 320}, {131, 354}, {144, 369}, {149, 375}, {181, 343}, {175, 333}, {128, 356}, {161, 325}, {175, 330}, {130, 356}, {180, 338}, {164, 322}, {179, 340}, {185, 350}, {137, 352}, {145, 376}, {166, 332}, {185, 339}, {172, 327}, {163, 334}, {174, 323}, {169, 326}, {166, 342}, {134, 375}, {183, 326}, {146, 355}, {173, 351}, {184, 331}, {187, 328}, {117, 384}, {129, 372}, {132, 381}, {156, 359}, {168, 339}, {144, 364}, {178, 332}, {148, 363} }>;

(II) A more general form is to represent the graph as the orbit of {192, 236} under the group generated by the following permutations:

a: (2, 23)(4, 14)(5, 123)(6, 62)(7, 8)(9, 68)(10, 76)(12, 40)(13, 147)(15, 63)(16, 59)(17, 60)(18, 57)(19, 58)(20, 129)(21, 51)(22, 25)(24, 36)(26, 29)(27, 103)(28, 128)(30, 31)(33, 35)(34, 120)(37, 127)(38, 126)(39, 87)(42, 122)(43, 46)(44, 136)(45, 50)(47, 66)(48, 107)(49, 105)(52, 132)(53, 158)(54, 117)(55, 115)(56, 116)(61, 67)(64, 65)(69, 70)(71, 141)(72, 121)(73, 181)(74, 77)(75, 88)(79, 150)(80, 84)(81, 178)(82, 124)(83, 156)(86, 176)(89, 112)(90, 100)(91, 135)(92, 161)(93, 111)(94, 143)(96, 179)(97, 155)(98, 130)(99, 104)(101, 109)(102, 113)(106, 118)(108, 167)(110, 163)(114, 125)(119, 189)(131, 134)(133, 183)(138, 177)(139, 148)(140, 184)(144, 168)(146, 149)(152, 190)(153, 188)(154, 180)(157, 165)(159, 164)(160, 171)(162, 182)(166, 173)(169, 187)(172, 174)(185, 191)(193, 269)(194, 256)(195, 296)(196, 242)(197, 342)(198, 225)(199, 366)(200, 332)(201, 299)(202, 203)(204, 266)(205, 233)(206, 306)(207, 232)(208, 272)(209, 304)(210, 215)(211, 290)(212, 354)(213, 220)(214, 360)(216, 219)(217, 293)(218, 347)(221, 377)(222, 282)(223, 333)(224, 363)(226, 336)(227, 268)(228, 267)(229, 313)(230, 367)(231, 271)(234, 295)(235, 356)(236, 370)(237, 294)(238, 300)(239, 379)(240, 297)(241, 312)(243, 252)(244, 255)(245, 375)(246, 307)(247, 326)(248, 275)(249, 331)(250, 353)(251, 368)(253, 338)(254, 323)(257, 286)(258, 259)(260, 334)(261, 343)(262, 328)(263, 319)(264, 310)(265, 352)(270, 285)(273, 357)(274, 281)(276, 345)(277, 350)(278, 289)(279, 381)(280, 335)(283, 383)(284, 351)(287, 292)(288, 337)(291, 372)(298, 324)(301, 315)(302, 314)(303, 339)(305, 346)(308, 330)(309, 325)(311, 329)(316, 348)(317, 349)(318, 341)(320, 374)(321, 365)(322, 340)(327, 380)(344, 355)(358, 371)(359, 378)(361, 382)(362, 369)(364, 373)(376, 384)
b: (2, 62)(3, 11)(5, 123)(6, 23)(7, 25)(8, 22)(9, 128)(10, 51)(12, 33)(13, 120)(15, 129)(16, 122)(17, 43)(18, 45)(19, 87)(20, 63)(21, 76)(24, 65)(26, 61)(27, 47)(28, 68)(29, 67)(30, 77)(31, 74)(34, 147)(35, 40)(36, 64)(37, 176)(38, 100)(39, 58)(42, 59)(44, 181)(46, 60)(48, 99)(49, 113)(50, 57)(52, 89)(53, 93)(54, 155)(55, 143)(56, 163)(66, 103)(69, 91)(70, 135)(71, 101)(72, 156)(73, 136)(75, 134)(78, 145)(79, 139)(81, 178)(82, 179)(83, 121)(85, 95)(86, 127)(88, 131)(90, 126)(92, 164)(94, 115)(96, 124)(97, 117)(98, 130)(102, 105)(104, 107)(106, 173)(109, 141)(110, 116)(111, 158)(112, 132)(118, 166)(119, 160)(133, 157)(138, 188)(140, 187)(144, 190)(146, 172)(148, 150)(149, 174)(152, 168)(153, 177)(154, 182)(159, 161)(162, 180)(165, 183)(169, 184)(171, 189)(185, 191)(186, 192)(193, 358)(194, 313)(195, 370)(196, 270)(197, 348)(198, 278)(199, 228)(200, 369)(201, 234)(202, 314)(203, 302)(204, 324)(205, 325)(206, 235)(207, 318)(208, 221)(209, 363)(210, 335)(211, 354)(212, 290)(213, 251)(214, 222)(215, 280)(216, 281)(217, 245)(218, 382)(219, 274)(220, 368)(223, 330)(224, 304)(225, 289)(226, 326)(227, 381)(229, 256)(230, 291)(231, 329)(232, 341)(233, 309)(236, 296)(237, 250)(238, 292)(239, 307)(240, 275)(241, 373)(242, 285)(243, 376)(244, 305)(246, 379)(247, 336)(248, 297)(249, 378)(252, 384)(253, 315)(254, 345)(255, 346)(257, 288)(258, 352)(259, 265)(260, 263)(261, 262)(264, 357)(266, 298)(267, 366)(268, 279)(269, 371)(271, 311)(272, 377)(273, 310)(276, 323)(277, 339)(282, 360)(283, 365)(284, 317)(286, 337)(287, 300)(293, 375)(294, 353)(295, 299)(301, 338)(303, 350)(306, 356)(308, 333)(312, 364)(316, 342)(319, 334)(320, 340)(321, 383)(322, 374)(327, 355)(328, 343)(331, 359)(332, 362)(344, 380)(347, 361)(349, 351)(367, 372)
c: (1, 2)(3, 8)(4, 39)(5, 132)(6, 124)(7, 23)(9, 11)(10, 142)(12, 46)(13, 183)(14, 15)(16, 66)(17, 123)(18, 62)(19, 120)(20, 180)(21, 82)(22, 52)(24, 87)(25, 59)(26, 32)(27, 145)(28, 168)(29, 68)(30, 78)(31, 76)(33, 83)(34, 57)(35, 44)(36, 40)(37, 135)(38, 147)(41, 97)(42, 106)(43, 63)(45, 108)(47, 60)(48, 122)(49, 98)(50, 79)(51, 58)(53, 112)(54, 176)(55, 154)(56, 129)(61, 133)(64, 118)(65, 130)(67, 127)(69, 137)(70, 103)(71, 128)(72, 178)(73, 191)(74, 144)(75, 156)(77, 121)(80, 90)(81, 141)(84, 88)(85, 153)(86, 116)(89, 172)(91, 126)(92, 179)(93, 162)(94, 167)(95, 104)(96, 160)(99, 155)(100, 136)(101, 146)(102, 174)(105, 107)(109, 143)(110, 169)(111, 161)(113, 165)(114, 158)(115, 117)(119, 173)(125, 157)(131, 171)(134, 182)(138, 190)(139, 185)(140, 181)(148, 177)(149, 150)(151, 159)(152, 184)(163, 170)(164, 188)(166, 192)(175, 189)(186, 187)(194, 375)(195, 247)(196, 334)(197, 307)(198, 267)(199, 218)(200, 337)(201, 347)(202, 225)(203, 287)(204, 305)(206, 310)(207, 240)(208, 243)(209, 276)(210, 242)(211, 285)(212, 343)(213, 231)(214, 273)(215, 326)(216, 354)(217, 289)(219, 229)(220, 382)(221, 238)(222, 280)(223, 246)(224, 350)(226, 241)(227, 339)(228, 237)(230, 351)(232, 383)(233, 304)(234, 327)(235, 373)(236, 342)(239, 361)(244, 303)(245, 257)(248, 259)(249, 353)(250, 274)(251, 325)(252, 346)(253, 374)(254, 268)(255, 336)(256, 368)(260, 262)(261, 277)(263, 341)(264, 317)(265, 360)(266, 278)(269, 275)(271, 301)(272, 293)(279, 344)(281, 308)(282, 298)(283, 299)(284, 370)(286, 322)(288, 330)(290, 359)(291, 338)(292, 371)(294, 358)(295, 311)(296, 328)(297, 366)(300, 369)(302, 315)(306, 355)(309, 340)(312, 323)(313, 363)(314, 379)(316, 362)(318, 376)(319, 352)(320, 324)(321, 381)(331, 332)(333, 367)(335, 372)(348, 356)(349, 365)(357, 384)(364, 377)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 509 ]
384
-1 231 311 271 329
-2 213 301 295 329
-3 379 380 239 327
-4 330 265 223 259
-5 199 321 267 283
-6 253 201 368 271
-7 302 327 382 295
-8 234 314 380 361
-9 223 279 306 197
-10 266 267 202 217
-11 344 355 246 307
-12 376 269 249 370
-13 374 215 347 318
-14 308 352 333 258
-15 319 367 258 281
-16 366 292 206 383
-17 297 232 237 349
-18 213 291 325 283
-19 286 222 239 240
-20 265 291 260 219
-21 199 375 302 324
-22 201 344 202 347
-23 220 234 311 315
-24 200 269 273 197
-25 299 355 203 218
-26 264 365 370 230
-27 275 357 193 318
-28 308 235 227 316
-29 310 321 367 236
-30 346 292 294 208
-31 287 237 272 305
-32 349 284 317 351
-33 243 378 195 371
-34 232 335 382 340
-35 358 359 252 296
-36 342 332 357 193
-37 280 360 207 262
-38 242 199 324 263
-39 288 246 248 360
-40 331 236 193 384
-41 244 255 346 305
-42 365 300 356 228
-43 341 248 250 351
-44 290 346 294 328
-45 365 205 251 230
-46 275 353 284 318
-47 264 358 207 240
-48 198 221 381 373
-49 221 355 203 373
-50 233 321 367 368
-51 298 245 366 314
-52 201 279 225 347
-53 220 266 311 339
-54 298 277 376 326
-55 363 374 273 296
-56 319 354 335 196
-57 220 309 372 383
-58 297 257 379 282
-59 199 287 283 306
-60 294 207 240 317
-61 291 357 195 283
-62 231 299 338 251
-63 259 230 263 274
-64 264 358 316 362
-65 310 369 348 371
-66 297 232 310 371
-67 273 372 383 296
-68 342 333 381 206
-69 319 258 248 360
-70 275 214 259 263
-71 254 288 356 348
-72 331 300 377 226
-73 244 354 250 261
-74 244 300 377 250
-75 290 203 215 293
-76 203 204 293 228
-77 221 353 255 238
-78 243 358 371 252
-79 256 333 304 381
-80 198 278 270 196
-81 200 312 362 373
-82 320 194 315 218
-83 378 247 292 208
-84 242 289 225 285
-85 276 375 245 345
-86 341 210 222 343
-87 275 214 337 307
-88 210 211 202 217
-89 234 289 268 361
-90 266 267 334 270
-91 297 352 334 282
-92 220 363 374 309
-93 298 277 368 271
-94 264 304 370 340
-95 254 323 293 217
-96 322 338 229 361
-97 204 303 336 252
-98 287 235 238 306
-99 278 227 208 241
-100 204 260 228 285
-101 257 345 306 197
-102 312 314 380 272
-103 341 269 248 273
-104 289 268 312 272
-105 364 344 377 202
-106 237 369 348 349
-107 364 377 279 225
-108 325 205 349 351
-109 286 276 342 206
-110 290 215 260 285
-111 231 324 251 350
-112 278 227 382 295
-113 302 327 208 241
-114 231 244 305 329
-115 320 224 357 195
-116 242 212 280 263
-117 247 324 350 384
-118 294 316 317 362
-119 337 230 274 307
-120 322 280 207 361
-121 221 336 238 249
-122 321 267 235 238
-123 365 366 228 383
-124 374 256 301 347
-125 255 311 346 271
-126 319 298 366 196
-127 232 214 335 328
-128 330 268 356 348
-129 352 334 216 372
-130 300 356 292 206
-131 354 245 335 314
-132 198 299 381 218
-133 299 247 338 384
-134 375 212 280 302
-135 265 222 260 240
-136 211 237 305 262
-137 352 265 258 259
-138 224 323 337 229
-139 308 224 227 229
-140 343 212 336 249
-141 235 323 337 316
-142 198 278 289 225
-143 209 310 322 236
-144 364 303 369 274
-145 376 269 193 384
-146 245 355 345 307
-147 341 210 320 218
-148 330 363 268 313
-149 276 375 344 246
-150 209 223 279 194
-151 309 233 325 205
-152 277 332 216 241
-153 209 257 345 194
-154 253 214 313 328
-155 243 266 226 339
-156 287 326 359 272
-157 301 336 295 252
-158 213 204 303 329
-159 205 304 251 340
-160 286 291 239 219
-161 320 213 224 325
-162 256 301 282 261
-163 210 211 334 270
-164 209 233 322 368
-165 243 234 226 315
-166 342 353 332 284
-167 309 233 284 317
-168 281 339 362 373
-169 211 326 359 262
-170 242 270 196 285
-171 257 379 216 372
-172 254 217 239 327
-173 200 250 197 351
-174 323 379 380 293
-175 308 330 223 333
-176 215 282 261 318
-177 363 254 288 313
-178 364 332 369 241
-179 253 313 382 340
-180 338 360 229 262
-181 353 255 343 212
-182 222 343 194 315
-183 253 376 201 326
-184 331 354 226 261
-185 281 339 350 219
-186 378 359 195 296
-187 290 378 247 328
-188 286 276 256 304
-189 288 246 367 281
-190 200 312 350 219
-191 277 303 216 274
-192 331 236 249 370
-193 145 36 27 40
-194 82 182 150 153
-195 33 115 61 186
-196 56 80 126 170
-197 24 101 173 9
-198 132 80 48 142
-199 59 5 38 21
-200 24 190 81 173
-201 22 6 183 52
-202 22 88 105 10
-203 25 49 75 76
-204 100 158 97 76
-205 45 159 151 108
-206 68 16 130 109
-207 47 37 60 120
-208 99 113 83 30
-209 143 150 153 164
-210 88 147 86 163
-211 88 136 169 163
-212 134 181 116 140
-213 2 158 18 161
-214 154 70 127 87
-215 110 176 13 75
-216 191 171 129 152
-217 88 95 172 10
-218 132 25 147 82
-219 190 160 20 185
-220 23 57 92 53
-221 77 121 48 49
-222 135 182 19 86
-223 4 150 9 175
-224 115 138 139 161
-225 84 52 107 142
-226 165 155 72 184
-227 99 112 28 139
-228 100 123 42 76
-229 180 138 139 96
-230 45 26 63 119
-231 1 111 114 62
-232 66 34 17 127
-233 167 50 151 164
-234 165 23 89 8
-235 122 28 141 98
-236 143 192 29 40
-237 136 17 106 31
-238 77 121 122 98
-239 3 160 172 19
-240 47 135 60 19
-241 99 178 113 152
-242 38 170 116 84
-243 33 165 78 155
-244 114 73 41 74
-245 146 51 85 131
-246 11 189 39 149
-247 187 133 83 117
-248 69 103 39 43
-249 121 12 192 140
-250 73 74 173 43
-251 45 111 159 62
-252 78 35 157 97
-253 154 179 6 183
-254 177 71 95 172
-255 77 125 181 41
-256 188 79 124 162
-257 101 58 171 153
-258 14 69 15 137
-259 4 70 137 63
-260 110 100 135 20
-261 176 73 162 184
-262 136 37 180 169
-263 70 38 116 63
-264 47 26 94 64
-265 135 4 137 20
-266 155 90 53 10
-267 122 90 5 10
-268 89 104 148 128
-269 12 24 145 103
-270 90 80 170 163
-271 1 125 93 6
-272 156 102 104 31
-273 55 67 24 103
-274 144 191 63 119
-275 46 70 27 87
-276 188 149 85 109
-277 191 93 152 54
-278 99 112 80 142
-279 150 52 107 9
-280 134 37 116 120
-281 189 168 15 185
-282 176 58 91 162
-283 59 5 61 18
-284 166 46 167 32
-285 110 100 170 84
-286 188 160 19 109
-287 156 59 31 98
-288 177 189 71 39
-289 89 104 84 142
-290 44 110 187 75
-291 61 160 18 20
-292 16 83 30 130
-293 95 75 174 76
-294 44 60 30 118
-295 2 112 157 7
-296 55 67 35 186
-297 66 58 91 17
-298 93 126 51 54
-299 132 133 25 62
-300 72 74 42 130
-301 2 124 157 162
-302 134 113 7 21
-303 144 158 191 97
-304 188 79 159 94
-305 114 136 41 31
-306 101 59 9 98
-307 11 146 119 87
-308 14 28 139 175
-309 57 167 92 151
-310 66 143 29 65
-311 1 23 125 53
-312 102 190 81 104
-313 154 177 179 148
-314 102 51 8 131
-315 165 23 82 182
-316 28 118 64 141
-317 167 60 118 32
-318 176 13 46 27
-319 56 69 15 126
-320 147 82 115 161
-321 122 5 50 29
-322 143 96 120 164
-323 138 95 141 174
-324 111 38 117 21
-325 18 161 151 108
-326 156 169 183 54
-327 3 113 7 172
-328 44 154 187 127
-329 1 2 114 158
-330 4 148 128 175
-331 192 72 40 184
-332 166 178 36 152
-333 68 79 14 175
-334 90 91 129 163
-335 34 56 127 131
-336 121 157 140 97
-337 138 119 141 87
-338 133 180 62 96
-339 155 168 53 185
-340 34 179 159 94
-341 103 147 86 43
-342 166 68 36 109
-343 181 182 140 86
-344 11 22 105 149
-345 101 146 85 153
-346 44 125 30 41
-347 22 13 124 52
-348 71 106 128 65
-349 17 106 108 32
-350 111 190 117 185
-351 173 108 32 43
-352 14 91 137 129
-353 77 166 46 181
-354 56 73 184 131
-355 11 25 146 49
-356 71 128 42 130
-357 36 27 115 61
-358 78 35 47 64
-359 35 156 169 186
-360 69 37 180 39
-361 89 8 96 120
-362 168 81 118 64
-363 55 177 92 148
-364 144 178 105 107
-365 45 123 26 42
-366 123 16 126 51
-367 189 15 50 29
-368 93 6 50 164
-369 144 178 106 65
-370 12 26 192 94
-371 33 66 78 65
-372 67 57 171 129
-373 168 48 81 49
-374 55 13 124 92
-375 134 149 85 21
-376 12 145 183 54
-377 72 105 74 107
-378 33 187 83 186
-379 3 58 171 174
-380 3 102 8 174
-381 132 68 79 48
-382 34 112 179 7
-383 67 57 123 16
-384 133 145 40 117
0

**************