[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 384, 522 ] =
BGCG(UG(ATD[192,158]);K1;7).
(I) Following is a form readable by MAGMA:
g:=Graph<384|{ {192, 208}, {141, 205}, {188, 252}, {182, 246}, {152, 219}, {172,
239}, {156, 223}, {130, 199}, {187, 254}, {171, 237}, {134, 206}, {169, 225},
{155, 210}, {185, 240}, {190, 245}, {148, 216}, {133, 200}, {154, 215}, {136,
197}, {139, 198}, {146, 221}, {183, 248}, {131, 210}, {142, 220}, {159, 204},
{183, 228}, {128, 212}, {175, 250}, {178, 231}, {157, 203}, {180, 226}, {161,
246}, {167, 240}, {138, 211}, {158, 196}, {162, 248}, {184, 227}, {131, 222},
{153, 196}, {167, 249}, {189, 227}, {147, 204}, {145, 241}, {189, 221}, {130,
224}, {172, 206}, {156, 254}, {133, 231}, {153, 250}, {141, 233}, {177, 213},
{131, 230}, {170, 207}, {154, 252}, {184, 222}, {152, 255}, {132, 236}, {144,
249}, {181, 220}, {163, 201}, {164, 206}, {186, 209}, {132, 232}, {153, 244},
{180, 217}, {160, 205}, {152, 247}, {178, 221}, {141, 253}, {179, 195}, {154,
234}, {166, 215}, {148, 230}, {189, 207}, {143, 251}, {181, 193}, {161, 213},
{156, 232}, {174, 219}, {141, 251}, {183, 193}, {163, 212}, {138, 242}, {160,
217}, {181, 204}, {166, 223}, {136, 242}, {170, 208}, {137, 242}, {184, 195},
{175, 212}, {150, 237}, {143, 243}, {158, 226}, {149, 234}, {74, 203}, {64,
194}, {98, 224}, {101, 231}, {88, 220}, {107, 239}, {117, 241}, {110, 233},
{116, 243}, {78, 199}, {113, 248}, {67, 201}, {97, 235}, {100, 238}, {110, 228},
{65, 202}, {80, 219}, {126, 245}, {96, 236}, {83, 222}, {100, 233}, {106, 229},
{117, 229}, {115, 226}, {91, 200}, {66, 214}, {83, 199}, {115, 230}, {68, 211},
{108, 244}, {95, 197}, {112, 234}, {106, 241}, {119, 235}, {90, 199}, {69, 218},
{109, 242}, {77, 236}, {87, 245}, {104, 202}, {120, 219}, {93, 249}, {81, 246},
{112, 215}, {72, 224}, {111, 197}, {123, 209}, {113, 221}, {80, 255}, {123,
212}, {75, 249}, {92, 238}, {95, 237}, {112, 194}, {83, 224}, {105, 218}, {80,
229}, {89, 236}, {91, 238}, {97, 215}, {110, 216}, {109, 213}, {68, 253}, {124,
197}, {71, 253}, {107, 209}, {100, 216}, {109, 209}, {107, 213}, {109, 211},
{78, 241}, {11, 203}, {42, 234}, {12, 205}, {3, 193}, {28, 223}, {60, 255}, {48,
243}, {37, 230}, {20, 208}, {1, 196}, {9, 204}, {2, 196}, {4, 195}, {56, 255},
{42, 237}, {7, 207}, {63, 247}, {33, 235}, {36, 238}, {3, 207}, {58, 246}, {22,
218}, {23, 218}, {44, 225}, {59, 244}, {19, 195}, {16, 193}, {27, 201}, {38,
244}, {1, 210}, {13, 217}, {49, 228}, {5, 210}, {60, 235}, {31, 200}, {32, 248},
{9, 208}, {30, 194}, {43, 247}, {11, 214}, {22, 203}, {1, 222}, {62, 225}, {48,
239}, {3, 220}, {15, 239}, {17, 240}, {40, 201}, {28, 253}, {26, 251}, {44,
206}, {47, 205}, {7, 227}, {25, 252}, {32, 198}, {56, 223}, {8, 225}, {23, 254},
{36, 200}, {38, 202}, {13, 226}, {26, 245}, {7, 247}, {19, 227}, {34, 211}, {51,
194}, {12, 254}, {53, 198}, {57, 202}, {4, 240}, {28, 232}, {16, 228}, {28,
233}, {17, 231}, {47, 217}, {12, 251}, {2, 250}, {46, 214}, {10, 243}, {18,
232}, {61, 198}, {6, 250}, {24, 229}, {37, 216}, {2, 252}, {40, 214}, {9, 265},
{100, 356}, {70, 327}, {45, 302}, {71, 324}, {39, 291}, {74, 334}, {58, 318},
{118, 370}, {53, 304}, {94, 347}, {99, 358}, {8, 270}, {87, 337}, {24, 286},
{90, 348}, {124, 378}, {21, 274}, {88, 351}, {91, 348}, {115, 372}, {122, 381},
{65, 329}, {93, 341}, {25, 272}, {52, 317}, {120, 369}, {4, 270}, {30, 276},
{97, 363}, {24, 275}, {93, 342}, {42, 294}, {74, 326}, {61, 304}, {101, 360},
{17, 287}, {66, 332}, {59, 309}, {49, 319}, {33, 303}, {114, 380}, {46, 289},
{57, 310}, {89, 342}, {122, 373}, {126, 369}, {26, 266}, {81, 321}, {38, 310},
{104, 376}, {112, 352}, {84, 325}, {2, 272}, {82, 320}, {78, 348}, {53, 295},
{13, 286}, {76, 351}, {30, 269}, {35, 311}, {57, 301}, {23, 258}, {79, 346},
{73, 348}, {43, 318}, {116, 355}, {41, 305}, {71, 351}, {105, 369}, {111, 375},
{35, 313}, {40, 307}, {68, 351}, {55, 300}, {52, 303}, {114, 361}, {39, 315},
{84, 328}, {39, 314}, {99, 382}, {92, 322}, {122, 356}, {15, 272}, {94, 321},
{106, 373}, {49, 273}, {102, 326}, {14, 303}, {61, 284}, {54, 279}, {103, 326},
{104, 329}, {31, 317}, {75, 361}, {127, 349}, {5, 294}, {76, 367}, {115, 336},
{41, 269}, {60, 280}, {45, 265}, {41, 268}, {85, 368}, {1, 295}, {30, 312}, {25,
319}, {18, 308}, {3, 293}, {125, 347}, {71, 352}, {85, 370}, {72, 367}, {96,
327}, {116, 339}, {37, 269}, {113, 345}, {31, 310}, {169, 384}, {62, 279}, {10,
288}, {74, 353}, {20, 312}, {88, 372}, {83, 383}, {67, 366}, {98, 335}, {10,
292}, {58, 276}, {50, 284}, {14, 288}, {5, 298}, {21, 292}, {39, 278}, {99,
338}, {96, 338}, {114, 320}, {86, 357}, {101, 342}, {120, 331}, {69, 369}, {81,
357}, {121, 333}, {43, 286}, {45, 283}, {18, 293}, {77, 378}, {68, 371}, {63,
264}, {53, 258}, {119, 320}, {127, 328}, {11, 307}, {76, 372}, {67, 379}, {56,
256}, {18, 298}, {92, 356}, {108, 340}, {16, 297}, {86, 367}, {8, 308}, {60,
256}, {23, 299}, {22, 299}, {95, 354}, {121, 324}, {190, 384}, {117, 309}, {69,
260}, {90, 283}, {125, 316}, {19, 337}, {80, 275}, {111, 300}, {26, 350}, {65,
261}, {64, 260}, {54, 370}, {111, 299}, {118, 307}, {35, 357}, {81, 279}, {73,
271}, {47, 361}, {37, 355}, {44, 363}, {63, 376}, {56, 383}, {42, 354}, {77,
261}, {5, 332}, {72, 257}, {14, 327}, {11, 322}, {41, 355}, {89, 275}, {70,
268}, {51, 377}, {98, 296}, {24, 339}, {59, 375}, {94, 274}, {121, 309}, {25,
340}, {64, 269}, {51, 382}, {4, 330}, {93, 275}, {124, 306}, {63, 368}, {102,
297}, {58, 362}, {34, 371}, {55, 358}, {45, 380}, {38, 375}, {105, 312}, {47,
380}, {51, 352}, {108, 319}, {114, 289}, {12, 344}, {36, 368}, {34, 374}, {21,
321}, {91, 271}, {121, 301}, {52, 353}, {95, 266}, {98, 311}, {36, 370}, {79,
281}, {117, 291}, {127, 297}, {86, 257}, {65, 281}, {84, 268}, {94, 262}, {29,
324}, {116, 301}, {123, 290}, {14, 340}, {82, 264}, {75, 273}, {70, 284}, {10,
337}, {62, 357}, {52, 367}, {20, 329}, {87, 266}, {75, 278}, {6, 344}, {40,
374}, {29, 323}, {8, 343}, {50, 365}, {72, 296}, {33, 320}, {79, 302}, {34,
323}, {106, 267}, {118, 279}, {88, 314}, {127, 285}, {48, 339}, {66, 289}, {92,
319}, {66, 294}, {46, 331}, {85, 304}, {84, 305}, {77, 296}, {55, 338}, {54,
336}, {70, 288}, {9, 366}, {15, 360}, {125, 282}, {6, 366}, {54, 350}, {62,
343}, {17, 379}, {29, 374}, {82, 313}, {73, 290}, {119, 284}, {21, 377}, {35,
335}, {103, 267}, {27, 374}, {55, 346}, {32, 333}, {118, 280}, {32, 335}, {86,
313}, {96, 271}, {108, 259}, {50, 323}, {89, 296}, {76, 317}, {15, 381}, {78,
316}, {67, 305}, {103, 277}, {13, 382}, {82, 289}, {49, 322}, {102, 277}, {90,
302}, {31, 362}, {46, 347}, {44, 345}, {33, 340}, {113, 260}, {59, 333}, {124,
266}, {16, 359}, {87, 288}, {85, 290}, {27, 364}, {22, 353}, {43, 339}, {50,
330}, {103, 287}, {20, 365}, {73, 304}, {97, 280}, {104, 274}, {64, 315}, {102,
285}, {107, 272}, {119, 268}, {120, 259}, {122, 257}, {125, 262}, {123, 263},
{6, 379}, {57, 324}, {29, 352}, {27, 358}, {99, 286}, {105, 276}, {126, 259},
{48, 334}, {69, 315}, {61, 323}, {7, 376}, {19, 364}, {101, 282}, {110, 273},
{129, 257}, {186, 314}, {135, 263}, {182, 308}, {168, 299}, {177, 306}, {159,
280}, {137, 256}, {164, 301}, {151, 285}, {132, 271}, {176, 316}, {151, 281},
{137, 262}, {185, 310}, {170, 293}, {154, 277}, {151, 263}, {151, 261}, {163,
305}, {163, 311}, {176, 292}, {135, 274}, {144, 261}, {145, 265}, {191, 295},
{180, 300}, {175, 311}, {160, 313}, {133, 287}, {153, 259}, {146, 264}, {135,
285}, {134, 281}, {173, 306}, {161, 318}, {171, 267}, {142, 303}, {128, 290},
{179, 273}, {139, 297}, {128, 291}, {150, 309}, {136, 300}, {179, 278}, {152,
318}, {162, 260}, {149, 306}, {134, 302}, {168, 256}, {160, 264}, {140, 293},
{188, 277}, {176, 282}, {177, 283}, {143, 292}, {159, 307}, {186, 278}, {145,
316}, {192, 365}, {132, 298}, {168, 262}, {165, 267}, {155, 298}, {149, 294},
{142, 314}, {150, 291}, {192, 373}, {173, 283}, {133, 317}, {182, 270}, {162,
282}, {140, 308}, {129, 312}, {187, 258}, {173, 276}, {158, 295}, {165, 287},
{128, 315}, {181, 265}, {179, 270}, {192, 381}, {191, 258}, {186, 263}, {155,
347}, {150, 343}, {185, 379}, {188, 382}, {147, 336}, {139, 335}, {170, 366},
{156, 344}, {144, 341}, {188, 377}, {147, 341}, {161, 359}, {164, 355}, {184,
383}, {173, 362}, {129, 329}, {176, 377}, {159, 341}, {140, 327}, {137, 325},
{136, 325}, {190, 371}, {166, 363}, {147, 350}, {158, 336}, {167, 361}, {79,
384}, {155, 331}, {143, 350}, {148, 325}, {191, 365}, {130, 337}, {185, 362},
{177, 359}, {166, 383}, {178, 360}, {148, 328}, {174, 371}, {140, 338}, {171,
373}, {157, 322}, {189, 354}, {168, 375}, {172, 332}, {138, 360}, {172, 334},
{146, 368}, {190, 349}, {129, 356}, {174, 331}, {164, 332}, {144, 378}, {178,
345}, {139, 359}, {134, 363}, {167, 330}, {165, 328}, {145, 380}, {130, 364},
{180, 346}, {142, 353}, {149, 378}, {146, 354}, {169, 345}, {157, 364}, {169,
346}, {174, 349}, {162, 342}, {187, 334}, {191, 330}, {131, 372}, {182, 321},
{175, 344}, {138, 381}, {165, 349}, {183, 333}, {157, 358}, {171, 343}, {187,
326}, {126, 384}, {135, 376} }>;
(II) A more general form is to represent the graph as the orbit of {192, 208}
under the group generated by the following permutations:
a: (2, 53)(3, 137)(4, 120)(5, 83)(6, 23)(7, 94)(8, 80)(9, 111)(10, 82)(11,
27)(13, 54)(14, 119)(15, 32)(16, 109)(17, 69)(18, 56)(19, 46)(20, 38)(21,
63)(22, 67)(24, 62)(25, 61)(26, 47)(29, 92)(30, 31)(33, 70)(34, 49)(35, 48)(36,
51)(37, 76)(39, 165)(40, 157)(41, 52)(42, 78)(43, 81)(44, 89)(45, 124)(50,
108)(55, 159)(57, 129)(59, 192)(60, 140)(64, 133)(66, 130)(68, 110)(71, 100)(72,
164)(73, 154)(74, 163)(75, 190)(77, 134)(79, 144)(84, 142)(85, 188)(86, 116)(87,
114)(88, 148)(90, 149)(91, 112)(93, 169)(95, 145)(96, 97)(98, 172)(99, 118)(101,
113)(102, 123)(103, 128)(105, 185)(106, 150)(107, 139)(117, 171)(121, 122)(125,
189)(126, 167)(127, 186)(132, 166)(136, 181)(138, 183)(143, 160)(146, 176)(147,
180)(152, 182)(153, 191)(155, 184)(162, 178)(168, 170)(174, 179)(175, 187)(193,
242)(194, 200)(195, 331)(196, 295)(197, 265)(198, 272)(199, 294)(201, 203)(202,
329)(204, 300)(205, 251)(206, 296)(207, 262)(208, 375)(209, 297)(210, 222)(211,
228)(212, 326)(213, 359)(214, 364)(215, 271)(216, 351)(217, 350)(218, 379)(219,
270)(220, 325)(221, 282)(223, 232)(224, 332)(225, 275)(226, 336)(227, 347)(229,
343)(230, 372)(231, 260)(233, 253)(234, 348)(235, 327)(236, 363)(237, 241)(238,
352)(239, 335)(240, 369)(243, 313)(244, 365)(245, 361)(246, 318)(247, 321)(248,
360)(249, 384)(250, 258)(252, 304)(254, 344)(255, 308)(256, 293)(257, 301)(259,
330)(261, 281)(263, 285)(264, 292)(266, 380)(267, 291)(268, 303)(269, 317)(273,
371)(274, 376)(276, 362)(277, 290)(278, 349)(279, 286)(280, 338)(283, 306)(284,
340)(287, 315)(288, 320)(289, 337)(298, 383)(299, 366)(302, 378)(305, 353)(307,
358)(309, 373)(310, 312)(311, 334)(314, 328)(316, 354)(319, 323)(322, 374)(324,
356)(333, 381)(339, 357)(341, 346)(342, 345)(355, 367)(368, 377)(370, 382) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 6, 12, 23, 53)(3, 10, 30, 36, 46, 109)(4, 13, 38, 35, 56, 102)(5, 15,
9, 26, 69, 73)(7, 21, 58, 63, 94, 161)(8, 24, 65, 62, 80, 151)(11, 34, 88, 14,
41, 100)(16, 19, 51, 31, 82, 137)(17, 47, 111, 32, 83, 154)(18, 48, 20, 54, 120,
123)(22, 61, 131, 25, 67, 141)(27, 71, 52, 119, 148, 49)(28, 74, 50, 115, 108,
163)(29, 76, 33, 84, 110, 157)(37, 92, 40, 68, 142, 70)(39, 96, 164, 122, 159,
190)(42, 101, 45, 95, 162, 90)(43, 104, 81, 152, 135, 182)(44, 106, 144, 169,
117, 77)(55, 121, 72, 97, 165, 75)(57, 86, 60, 127, 179, 99)(59, 98, 166, 103,
167, 180)(64, 91, 66, 138, 181, 87)(78, 149, 178, 145, 124, 113)(79, 150, 89,
134, 171, 93)(85, 155, 107, 170, 143, 105)(112, 133, 114, 136, 183, 130)(116,
129, 118, 174, 186, 140)(125, 177, 189, 176, 173, 146)(126, 128, 132, 172, 192,
147)(139, 184, 188, 185, 160, 168)(153, 175, 156, 187, 191, 158)(193, 337, 194,
200, 289, 242)(195, 382, 310, 313, 256, 297)(196, 250, 344, 254, 258, 295)(197,
248, 199, 234, 231, 380)(198, 222, 252, 379, 205, 299)(201, 253, 353, 284, 230,
319)(202, 357, 255, 285, 270, 286)(203, 323, 372, 340, 305, 233)(204, 245, 315,
271, 332, 381)(206, 373, 341, 384, 291, 236)(207, 292, 276, 368, 347, 213)(208,
350, 369, 290, 298, 239)(209, 293, 243, 312, 370, 331)(210, 272, 366, 251, 218,
304)(211, 220, 288, 269, 238, 214)(212, 232, 334, 365, 336, 259)(215, 287, 361,
300, 333, 224)(216, 322, 374, 351, 303, 268)(217, 375, 335, 383, 277, 240)(219,
263, 308, 339, 329, 279)(221, 316, 306)(223, 326, 330, 226, 244, 311)(225, 229,
261)(227, 377, 362, 264, 262, 359)(228, 364, 352, 317, 320, 325)(235, 328, 273,
358, 324, 367)(237, 342, 302)(241, 378, 345)(246, 247, 274)(249, 346, 309, 296,
363, 267)(257, 280, 349, 278, 338, 301)(260, 348, 294, 360, 265, 266)(275, 281,
343)(282, 283, 354)(307, 371, 314, 327, 355, 356)(318, 376, 321)
c: (2, 83)(3, 111)(4, 120)(5, 53)(6, 56)(7, 38)(8, 69)(9, 137)(10, 92)(11,
70)(12, 28)(13, 76)(14, 157)(15, 78)(16, 124)(17, 80)(18, 23)(19, 108)(20,
94)(21, 129)(22, 140)(24, 133)(25, 130)(26, 110)(27, 33)(29, 82)(30, 81)(31,
43)(32, 42)(34, 114)(35, 112)(36, 116)(37, 54)(39, 169)(40, 119)(41, 118)(44,
128)(45, 109)(46, 50)(47, 68)(48, 91)(49, 87)(51, 86)(52, 99)(55, 142)(57,
63)(59, 189)(60, 67)(61, 66)(62, 64)(65, 135)(71, 160)(72, 188)(73, 172)(74,
96)(75, 190)(77, 102)(79, 186)(84, 159)(85, 164)(88, 180)(89, 103)(90, 107)(93,
165)(95, 183)(97, 163)(98, 154)(100, 143)(101, 106)(105, 182)(113, 150)(117,
178)(121, 146)(122, 176)(123, 134)(125, 192)(126, 179)(127, 144)(131, 158)(132,
187)(136, 181)(138, 145)(139, 149)(147, 148)(152, 185)(153, 184)(155, 191)(161,
173)(162, 171)(166, 175)(167, 174)(168, 170)(193, 197)(194, 357)(195, 259)(196,
222)(198, 294)(199, 272)(200, 339)(201, 235)(202, 376)(203, 327)(204, 325)(205,
253)(206, 290)(207, 375)(208, 262)(209, 302)(210, 295)(211, 380)(212, 363)(213,
283)(214, 284)(215, 311)(216, 350)(217, 351)(218, 308)(219, 240)(220, 300)(221,
309)(223, 344)(224, 252)(225, 315)(226, 372)(227, 244)(228, 266)(229, 231)(230,
336)(232, 254)(233, 251)(234, 335)(236, 326)(237, 248)(238, 243)(239, 348)(241,
360)(242, 265)(245, 273)(246, 276)(247, 310)(249, 349)(250, 383)(255, 379)(256,
366)(257, 377)(258, 298)(260, 343)(261, 285)(263, 281)(264, 324)(267, 342)(268,
307)(269, 279)(270, 369)(271, 334)(274, 329)(275, 287)(277, 296)(278, 384)(280,
305)(282, 373)(286, 317)(288, 322)(289, 323)(291, 345)(292, 356)(293, 299)(297,
378)(301, 368)(303, 358)(304, 332)(306, 359)(312, 321)(313, 352)(314, 346)(316,
381)(318, 362)(319, 337)(320, 374)(328, 341)(330, 331)(333, 354)(338, 353)(340,
364)(347, 365)(355, 370)(361, 371)(367, 382)
C4[ 384, 522 ]
384
-1 210 222 196 295
-2 250 272 196 252
-3 220 193 293 207
-4 330 270 195 240
-5 210 298 332 294
-6 344 366 379 250
-7 376 247 227 207
-8 308 343 225 270
-9 265 366 204 208
-10 243 288 292 337
-11 322 203 214 307
-12 254 344 205 251
-13 286 226 217 382
-14 288 303 327 340
-15 381 239 272 360
-16 297 193 359 228
-17 231 287 379 240
-18 308 232 298 293
-19 364 227 337 195
-20 365 312 208 329
-21 321 377 292 274
-22 353 299 203 218
-23 254 299 258 218
-24 275 286 229 339
-25 319 272 252 340
-26 266 245 251 350
-27 374 364 201 358
-28 253 232 233 223
-29 352 374 323 324
-30 276 312 269 194
-31 200 310 317 362
-32 198 333 335 248
-33 320 235 303 340
-34 374 211 323 371
-35 311 313 335 357
-36 200 368 238 370
-37 355 269 216 230
-38 375 244 310 202
-39 278 291 314 315
-40 374 201 214 307
-41 355 268 269 305
-42 354 234 237 294
-43 286 247 339 318
-44 363 345 225 206
-45 265 302 380 283
-46 331 289 214 347
-47 380 205 217 361
-48 243 334 239 339
-49 319 322 228 273
-50 330 365 323 284
-51 352 377 194 382
-52 353 367 303 317
-53 198 258 304 295
-54 279 336 370 350
-55 300 346 358 338
-56 255 223 256 383
-57 310 202 301 324
-58 276 246 318 362
-59 309 375 244 333
-60 255 256 235 280
-61 198 323 304 284
-62 343 279 225 357
-63 264 376 247 368
-64 269 194 260 315
-65 202 281 261 329
-66 332 289 214 294
-67 201 366 379 305
-68 253 211 371 351
-69 369 260 315 218
-70 288 268 327 284
-71 253 352 324 351
-72 224 257 367 296
-73 290 271 304 348
-74 353 334 203 326
-75 278 249 273 361
-76 367 317 372 351
-77 378 236 261 296
-78 199 348 316 241
-79 302 346 281 384
-80 275 255 229 219
-81 321 246 279 357
-82 264 320 289 313
-83 199 222 224 383
-84 268 325 305 328
-85 290 368 304 370
-86 257 367 313 357
-87 266 288 245 337
-88 220 314 372 351
-89 275 342 236 296
-90 199 302 348 283
-91 200 238 271 348
-92 319 322 356 238
-93 275 341 342 249
-94 321 347 262 274
-95 266 354 237 197
-96 236 271 327 338
-97 363 235 280 215
-98 311 224 335 296
-99 286 358 338 382
-100 233 356 216 238
-101 231 342 282 360
-102 297 277 326 285
-103 287 277 267 326
-104 376 202 274 329
-105 276 312 369 218
-106 267 229 241 373
-107 209 213 239 272
-108 319 244 259 340
-109 209 242 211 213
-110 233 216 228 273
-111 375 299 300 197
-112 352 234 215 194
-113 221 345 248 260
-114 320 289 380 361
-115 226 336 372 230
-116 243 355 301 339
-117 309 291 229 241
-118 279 280 370 307
-119 320 235 268 284
-120 331 259 369 219
-121 309 333 301 324
-122 257 356 381 373
-123 209 212 290 263
-124 266 378 306 197
-125 347 282 316 262
-126 245 259 369 384
-127 297 349 328 285
-128 212 290 291 315
-129 257 312 356 329
-130 199 364 224 337
-131 210 222 372 230
-132 232 298 236 271
-133 231 287 200 317
-134 363 302 281 206
-135 376 263 274 285
-136 242 300 325 197
-137 242 256 325 262
-138 242 211 381 360
-139 198 297 335 359
-140 308 293 327 338
-141 253 233 205 251
-142 220 353 303 314
-143 243 292 251 350
-144 341 378 249 261
-145 265 380 316 241
-146 264 221 354 368
-147 341 204 336 350
-148 325 216 328 230
-149 234 378 294 306
-150 309 343 291 237
-151 281 261 263 285
-152 255 247 219 318
-153 244 259 250 196
-154 277 234 215 252
-155 210 298 331 347
-156 232 254 223 344
-157 364 322 203 358
-158 226 336 196 295
-159 341 280 204 307
-160 264 313 205 217
-161 213 246 359 318
-162 342 248 260 282
-163 201 212 311 305
-164 332 355 301 206
-165 287 267 349 328
-166 363 223 215 383
-167 330 249 240 361
-168 375 299 256 262
-169 345 225 346 384
-170 366 293 207 208
-171 343 267 237 373
-172 332 334 206 239
-173 276 283 306 362
-174 331 349 371 219
-175 212 311 344 250
-176 377 292 282 316
-177 213 359 283 306
-178 231 221 345 360
-179 278 270 195 273
-180 300 346 226 217
-181 220 265 193 204
-182 308 321 246 270
-183 333 193 248 228
-184 222 227 195 383
-185 310 379 240 362
-186 209 278 314 263
-187 254 334 258 326
-188 277 377 382 252
-189 221 354 227 207
-190 245 349 371 384
-191 330 365 258 295
-192 365 381 208 373
-193 3 16 181 183
-194 112 51 30 64
-195 179 4 19 184
-196 1 2 158 153
-197 111 124 136 95
-198 61 139 53 32
-199 78 90 83 130
-200 133 36 91 31
-201 67 27 40 163
-202 57 38 104 65
-203 11 22 157 74
-204 147 159 181 9
-205 12 47 160 141
-206 44 134 172 164
-207 189 3 170 7
-208 170 192 9 20
-209 123 107 109 186
-210 1 155 5 131
-211 34 68 138 109
-212 123 128 163 175
-213 177 161 107 109
-214 11 66 46 40
-215 154 166 112 97
-216 110 100 37 148
-217 13 47 180 160
-218 22 23 69 105
-219 80 152 174 120
-220 88 3 181 142
-221 178 189 113 146
-222 1 83 184 131
-223 56 166 156 28
-224 72 83 130 98
-225 44 169 62 8
-226 13 158 180 115
-227 189 7 19 184
-228 110 16 49 183
-229 24 80 106 117
-230 37 115 148 131
-231 133 101 178 17
-232 132 156 28 18
-233 110 100 28 141
-234 154 112 149 42
-235 33 60 97 119
-236 77 132 89 96
-237 171 95 150 42
-238 100 36 91 92
-239 15 48 172 107
-240 167 4 17 185
-241 78 145 106 117
-242 136 137 138 109
-243 143 48 116 10
-244 59 38 108 153
-245 190 26 126 87
-246 58 81 182 161
-247 7 63 152 43
-248 113 183 162 32
-249 144 167 93 75
-250 2 6 153 175
-251 143 12 26 141
-252 154 188 2 25
-253 68 71 28 141
-254 187 12 23 156
-255 56 80 60 152
-256 56 168 60 137
-257 122 72 129 86
-258 187 23 191 53
-259 126 108 120 153
-260 69 113 162 64
-261 77 144 151 65
-262 168 125 137 94
-263 123 135 151 186
-264 146 82 160 63
-265 45 145 181 9
-266 124 26 95 87
-267 165 103 171 106
-268 70 84 41 119
-269 37 30 41 64
-270 179 4 182 8
-271 132 91 73 96
-272 2 25 15 107
-273 110 179 49 75
-274 135 104 94 21
-275 89 24 80 93
-276 58 105 30 173
-277 154 188 102 103
-278 179 39 75 186
-279 81 62 118 54
-280 60 159 118 97
-281 79 134 151 65
-282 176 101 125 162
-283 45 177 90 173
-284 70 50 61 119
-285 102 135 127 151
-286 99 13 24 43
-287 165 133 103 17
-288 14 70 10 87
-289 66 46 114 82
-290 123 73 128 85
-291 39 117 128 150
-292 143 176 10 21
-293 3 170 18 140
-294 66 5 149 42
-295 1 158 191 53
-296 77 89 72 98
-297 102 16 127 139
-298 132 155 5 18
-299 22 23 111 168
-300 55 111 136 180
-301 121 57 116 164
-302 45 79 90 134
-303 33 14 52 142
-304 61 73 85 53
-305 67 84 41 163
-306 177 124 149 173
-307 11 159 40 118
-308 182 18 8 140
-309 121 59 117 150
-310 57 38 31 185
-311 35 163 98 175
-312 105 30 129 20
-313 35 82 160 86
-314 88 39 142 186
-315 69 39 128 64
-316 176 78 145 125
-317 133 52 31 76
-318 58 161 152 43
-319 25 92 49 108
-320 33 114 82 119
-321 81 94 182 21
-322 11 157 92 49
-323 34 50 61 29
-324 121 57 71 29
-325 136 137 148 84
-326 187 102 103 74
-327 14 70 96 140
-328 165 148 127 84
-329 104 129 20 65
-330 167 4 191 50
-331 155 46 174 120
-332 66 5 172 164
-333 121 59 183 32
-334 187 48 172 74
-335 35 139 32 98
-336 147 158 115 54
-337 19 130 10 87
-338 55 99 96 140
-339 24 48 116 43
-340 33 14 25 108
-341 144 147 93 159
-342 89 101 93 162
-343 171 62 150 8
-344 12 156 6 175
-345 44 178 113 169
-346 55 79 169 180
-347 155 46 125 94
-348 78 90 91 73
-349 165 190 127 174
-350 143 26 147 54
-351 88 68 71 76
-352 112 71 29 51
-353 22 52 74 142
-354 189 146 95 42
-355 37 116 41 164
-356 100 122 92 129
-357 35 81 62 86
-358 55 99 157 27
-359 177 16 139 161
-360 101 178 15 138
-361 167 47 114 75
-362 58 173 31 185
-363 44 166 134 97
-364 157 27 19 130
-365 191 192 50 20
-366 67 170 6 9
-367 72 52 86 76
-368 36 146 63 85
-369 69 126 105 120
-370 36 85 118 54
-371 34 68 190 174
-372 88 115 76 131
-373 122 192 171 106
-374 34 27 29 40
-375 111 168 59 38
-376 135 104 7 63
-377 176 188 51 21
-378 77 144 124 149
-379 67 6 17 185
-380 45 145 47 114
-381 122 15 192 138
-382 99 188 13 51
-383 56 166 83 184
-384 79 190 169 126
0