C4graphGraph forms for C4 [ 384, 525 ] = BGCG(UG(ATD[192,161]);K1;{13,15})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 525 ] = BGCG(UG(ATD[192,161]);K1;{13,15}).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {192, 247}, {145, 208}, {176, 241}, {167, 230}, {154, 219}, {160, 229}, {187, 253}, {156, 219}, {189, 250}, {163, 235}, {133, 204}, {190, 247}, {171, 226}, {160, 233}, {178, 249}, {131, 207}, {188, 240}, {155, 215}, {149, 216}, {189, 240}, {144, 222}, {173, 227}, {135, 215}, {182, 230}, {136, 216}, {183, 230}, {169, 251}, {184, 235}, {177, 229}, {136, 221}, {179, 235}, {147, 201}, {168, 244}, {179, 239}, {150, 203}, {187, 230}, {167, 250}, {142, 208}, {186, 228}, {177, 238}, {139, 234}, {162, 195}, {158, 255}, {151, 246}, {161, 195}, {179, 209}, {142, 237}, {188, 223}, {152, 253}, {131, 229}, {185, 223}, {151, 241}, {132, 226}, {147, 244}, {134, 236}, {166, 205}, {175, 196}, {154, 246}, {141, 227}, {157, 243}, {162, 205}, {190, 209}, {131, 242}, {158, 236}, {182, 196}, {181, 199}, {138, 249}, {173, 222}, {185, 205}, {152, 237}, {191, 202}, {189, 200}, {160, 214}, {163, 213}, {180, 195}, {184, 207}, {186, 195}, {177, 205}, {142, 243}, {155, 229}, {186, 196}, {174, 208}, {155, 228}, {68, 197}, {83, 209}, {97, 226}, {120, 251}, {67, 199}, {119, 243}, {75, 206}, {125, 248}, {66, 196}, {109, 234}, {88, 210}, {98, 232}, {98, 238}, {109, 225}, {112, 252}, {121, 245}, {90, 213}, {126, 241}, {108, 252}, {78, 223}, {85, 199}, {89, 203}, {94, 202}, {67, 219}, {74, 210}, {127, 231}, {98, 251}, {107, 241}, {115, 232}, {75, 214}, {104, 245}, {112, 237}, {127, 226}, {91, 250}, {66, 224}, {116, 214}, {66, 231}, {69, 224}, {125, 219}, {71, 224}, {88, 240}, {90, 242}, {121, 209}, {90, 243}, {102, 207}, {116, 221}, {82, 254}, {95, 242}, {64, 238}, {104, 198}, {87, 248}, {119, 216}, {82, 227}, {94, 239}, {77, 255}, {120, 202}, {103, 212}, {123, 200}, {124, 201}, {70, 240}, {77, 251}, {115, 197}, {120, 206}, {79, 248}, {103, 208}, {105, 222}, {79, 247}, {95, 231}, {106, 210}, {94, 228}, {100, 222}, {65, 250}, {124, 199}, {85, 233}, {112, 204}, {115, 207}, {67, 254}, {32, 224}, {11, 201}, {26, 216}, {8, 203}, {16, 211}, {2, 198}, {58, 255}, {61, 248}, {60, 249}, {50, 244}, {6, 193}, {24, 223}, {14, 198}, {21, 221}, {19, 218}, {63, 245}, {38, 237}, {58, 246}, {44, 225}, {25, 215}, {51, 253}, {4, 203}, {10, 218}, {60, 236}, {59, 235}, {55, 231}, {62, 239}, {11, 217}, {6, 213}, {55, 228}, {44, 255}, {35, 247}, {1, 212}, {12, 217}, {9, 220}, {2, 212}, {2, 213}, {33, 246}, {10, 221}, {26, 194}, {54, 238}, {29, 197}, {27, 194}, {35, 249}, {15, 211}, {63, 227}, {52, 232}, {52, 233}, {28, 194}, {31, 193}, {21, 202}, {22, 201}, {15, 239}, {38, 198}, {32, 193}, {42, 200}, {10, 233}, {48, 211}, {47, 204}, {5, 225}, {22, 242}, {16, 245}, {13, 234}, {41, 206}, {23, 254}, {53, 220}, {56, 210}, {36, 200}, {54, 218}, {48, 220}, {18, 252}, {57, 215}, {13, 253}, {42, 218}, {17, 225}, {37, 212}, {12, 254}, {55, 197}, {43, 217}, {61, 206}, {53, 193}, {54, 194}, {44, 217}, {2, 244}, {30, 232}, {59, 204}, {36, 220}, {46, 214}, {19, 234}, {21, 236}, {47, 211}, {1, 252}, {74, 330}, {92, 348}, {9, 264}, {74, 331}, {97, 352}, {104, 361}, {118, 375}, {68, 326}, {130, 384}, {60, 319}, {78, 330}, {40, 301}, {86, 339}, {118, 368}, {76, 331}, {99, 356}, {33, 297}, {96, 360}, {117, 381}, {123, 371}, {26, 275}, {86, 351}, {35, 298}, {39, 301}, {25, 277}, {92, 336}, {82, 350}, {73, 325}, {110, 355}, {77, 349}, {23, 262}, {76, 349}, {47, 318}, {111, 382}, {118, 359}, {3, 273}, {95, 332}, {8, 284}, {14, 282}, {37, 304}, {80, 325}, {62, 299}, {42, 319}, {41, 316}, {97, 372}, {126, 363}, {56, 302}, {69, 339}, {124, 363}, {3, 283}, {29, 261}, {5, 285}, {103, 383}, {107, 371}, {21, 268}, {43, 306}, {33, 312}, {114, 363}, {17, 267}, {83, 329}, {64, 346}, {9, 274}, {89, 322}, {62, 293}, {99, 383}, {35, 318}, {106, 375}, {15, 273}, {65, 351}, {56, 294}, {7, 280}, {45, 306}, {22, 265}, {32, 256}, {84, 372}, {53, 277}, {45, 269}, {96, 320}, {110, 334}, {121, 345}, {20, 309}, {118, 343}, {25, 314}, {79, 364}, {98, 321}, {124, 351}, {28, 312}, {78, 362}, {34, 262}, {12, 297}, {83, 374}, {113, 343}, {119, 337}, {51, 283}, {108, 324}, {55, 286}, {78, 359}, {3, 296}, {10, 289}, {99, 328}, {7, 299}, {66, 366}, {50, 286}, {43, 263}, {40, 260}, {113, 349}, {16, 317}, {125, 336}, {4, 298}, {59, 277}, {9, 295}, {96, 334}, {6, 297}, {175, 384}, {50, 285}, {19, 316}, {30, 302}, {63, 270}, {91, 362}, {82, 352}, {20, 295}, {72, 379}, {92, 367}, {106, 345}, {8, 316}, {46, 282}, {40, 284}, {39, 275}, {26, 303}, {36, 273}, {94, 360}, {100, 338}, {13, 314}, {72, 383}, {34, 277}, {6, 318}, {67, 379}, {31, 295}, {114, 330}, {31, 294}, {65, 376}, {57, 256}, {16, 298}, {104, 338}, {19, 296}, {75, 368}, {41, 274}, {80, 364}, {18, 303}, {115, 334}, {122, 327}, {127, 322}, {50, 268}, {117, 331}, {39, 280}, {102, 345}, {111, 336}, {49, 369}, {88, 280}, {87, 279}, {76, 268}, {41, 360}, {126, 319}, {38, 356}, {24, 347}, {58, 377}, {27, 351}, {105, 301}, {125, 313}, {17, 340}, {84, 274}, {85, 275}, {25, 350}, {61, 378}, {93, 282}, {106, 301}, {15, 327}, {81, 281}, {28, 340}, {97, 297}, {33, 363}, {51, 376}, {87, 284}, {76, 263}, {110, 293}, {122, 305}, {71, 267}, {75, 263}, {122, 310}, {4, 329}, {44, 353}, {126, 307}, {68, 266}, {34, 365}, {64, 271}, {61, 370}, {59, 372}, {101, 298}, {116, 315}, {48, 352}, {81, 257}, {53, 357}, {52, 356}, {117, 293}, {23, 326}, {65, 272}, {102, 311}, {112, 289}, {116, 293}, {89, 267}, {101, 311}, {47, 380}, {91, 264}, {72, 283}, {93, 270}, {101, 310}, {110, 317}, {20, 320}, {45, 377}, {13, 344}, {108, 313}, {30, 328}, {1, 342}, {4, 339}, {107, 316}, {80, 264}, {91, 259}, {1, 344}, {64, 281}, {30, 327}, {127, 294}, {85, 271}, {114, 296}, {17, 330}, {89, 258}, {73, 274}, {60, 359}, {18, 329}, {93, 262}, {99, 312}, {29, 321}, {86, 266}, {62, 354}, {5, 344}, {70, 283}, {51, 366}, {36, 378}, {73, 279}, {38, 376}, {108, 306}, {109, 307}, {11, 340}, {49, 366}, {105, 310}, {111, 304}, {12, 364}, {79, 303}, {107, 267}, {70, 295}, {86, 311}, {120, 281}, {49, 339}, {90, 312}, {80, 306}, {100, 262}, {34, 321}, {54, 341}, {56, 349}, {84, 305}, {23, 369}, {113, 279}, {28, 379}, {88, 319}, {71, 288}, {49, 342}, {111, 264}, {37, 333}, {93, 309}, {3, 362}, {69, 300}, {121, 272}, {5, 367}, {74, 288}, {58, 336}, {31, 373}, {122, 272}, {8, 355}, {14, 354}, {18, 382}, {117, 281}, {7, 362}, {123, 278}, {11, 357}, {63, 337}, {22, 376}, {103, 265}, {46, 321}, {52, 347}, {81, 289}, {95, 302}, {46, 348}, {73, 315}, {83, 288}, {123, 271}, {45, 344}, {57, 332}, {27, 365}, {77, 315}, {69, 307}, {24, 367}, {57, 334}, {43, 348}, {32, 343}, {27, 364}, {102, 273}, {7, 382}, {71, 318}, {20, 366}, {101, 287}, {14, 373}, {87, 300}, {100, 287}, {109, 278}, {119, 268}, {39, 347}, {84, 296}, {29, 352}, {48, 333}, {40, 341}, {114, 271}, {42, 340}, {92, 290}, {81, 303}, {68, 314}, {105, 279}, {37, 346}, {72, 311}, {70, 313}, {113, 270}, {178, 307}, {135, 261}, {191, 317}, {172, 302}, {161, 291}, {192, 323}, {148, 272}, {192, 324}, {129, 260}, {184, 317}, {130, 260}, {165, 291}, {132, 259}, {141, 266}, {164, 300}, {128, 265}, {184, 305}, {151, 285}, {175, 292}, {189, 305}, {185, 308}, {139, 261}, {145, 287}, {130, 269}, {143, 256}, {151, 263}, {143, 286}, {176, 290}, {190, 300}, {128, 276}, {148, 258}, {24, 384}, {188, 292}, {172, 308}, {172, 310}, {174, 309}, {191, 292}, {146, 270}, {159, 259}, {153, 261}, {129, 286}, {180, 299}, {137, 278}, {140, 275}, {138, 299}, {134, 292}, {134, 288}, {159, 313}, {146, 308}, {152, 304}, {168, 257}, {139, 289}, {170, 257}, {179, 287}, {170, 260}, {140, 291}, {162, 269}, {132, 309}, {187, 266}, {137, 315}, {164, 278}, {181, 257}, {182, 259}, {144, 294}, {149, 291}, {183, 256}, {140, 308}, {177, 265}, {165, 285}, {173, 276}, {187, 258}, {152, 290}, {174, 276}, {162, 280}, {153, 290}, {166, 282}, {190, 258}, {161, 284}, {176, 269}, {169, 276}, {133, 314}, {145, 337}, {138, 331}, {141, 335}, {166, 356}, {164, 358}, {182, 373}, {178, 374}, {139, 333}, {129, 326}, {174, 361}, {149, 338}, {143, 328}, {135, 335}, {136, 323}, {172, 359}, {146, 345}, {164, 360}, {175, 354}, {138, 324}, {171, 357}, {161, 367}, {153, 342}, {169, 377}, {157, 332}, {176, 353}, {136, 346}, {132, 343}, {150, 325}, {149, 326}, {156, 329}, {168, 381}, {163, 374}, {191, 361}, {171, 380}, {167, 383}, {173, 373}, {156, 325}, {186, 355}, {128, 347}, {147, 328}, {128, 348}, {155, 327}, {171, 374}, {180, 361}, {133, 346}, {166, 377}, {156, 323}, {96, 384}, {181, 341}, {157, 381}, {146, 370}, {129, 353}, {141, 365}, {144, 368}, {144, 370}, {158, 381}, {130, 358}, {150, 370}, {148, 369}, {170, 335}, {159, 378}, {165, 332}, {137, 355}, {165, 335}, {153, 371}, {140, 358}, {159, 372}, {185, 341}, {158, 368}, {163, 333}, {147, 380}, {148, 379}, {150, 358}, {192, 304}, {178, 322}, {167, 342}, {142, 380}, {137, 378}, {145, 354}, {131, 375}, {180, 320}, {183, 322}, {133, 371}, {181, 323}, {135, 369}, {154, 365}, {183, 320}, {169, 350}, {134, 382}, {188, 324}, {143, 375}, {168, 338}, {170, 337}, {157, 353}, {160, 350}, {154, 357} }>;

(II) A more general form is to represent the graph as the orbit of {192, 247} under the group generated by the following permutations:

a: (2, 5)(3, 9)(6, 17)(7, 20)(8, 16)(10, 29)(11, 33)(12, 28)(13, 37)(14, 24)(15, 41)(18, 49)(19, 48)(21, 55)(22, 58)(23, 26)(25, 64)(27, 67)(30, 75)(31, 78)(32, 74)(34, 85)(35, 89)(36, 84)(38, 92)(39, 93)(40, 63)(42, 97)(43, 99)(44, 90)(45, 103)(46, 52)(47, 107)(51, 111)(53, 114)(54, 82)(56, 118)(57, 117)(59, 123)(60, 127)(61, 122)(62, 96)(65, 125)(66, 134)(68, 136)(69, 83)(70, 91)(72, 80)(73, 102)(76, 143)(77, 131)(79, 148)(81, 135)(86, 156)(87, 121)(88, 132)(95, 158)(98, 160)(100, 140)(101, 150)(104, 161)(105, 146)(106, 113)(108, 167)(109, 163)(112, 153)(115, 116)(119, 129)(120, 155)(124, 154)(126, 171)(128, 166)(130, 145)(137, 184)(138, 183)(141, 181)(142, 176)(144, 172)(147, 151)(159, 189)(162, 174)(164, 179)(165, 168)(169, 177)(173, 185)(182, 188)(186, 191)(187, 192)(193, 330)(194, 254)(195, 361)(196, 292)(197, 221)(198, 367)(199, 365)(200, 372)(201, 246)(202, 228)(203, 298)(204, 371)(205, 276)(206, 327)(207, 315)(208, 269)(209, 300)(210, 343)(211, 316)(212, 344)(213, 225)(214, 232)(215, 281)(216, 326)(217, 312)(218, 352)(219, 351)(220, 296)(222, 308)(223, 373)(224, 288)(226, 319)(227, 341)(229, 251)(230, 324)(231, 236)(233, 321)(234, 333)(235, 278)(237, 290)(238, 350)(239, 360)(240, 259)(241, 380)(242, 255)(243, 353)(244, 285)(245, 284)(247, 258)(248, 272)(249, 322)(250, 313)(252, 342)(253, 304)(256, 331)(257, 335)(260, 337)(261, 289)(262, 275)(263, 328)(264, 283)(265, 377)(266, 323)(267, 318)(268, 286)(270, 301)(271, 277)(273, 274)(279, 345)(280, 309)(282, 347)(287, 358)(291, 338)(293, 334)(294, 359)(295, 362)(297, 340)(299, 320)(302, 368)(303, 369)(305, 378)(306, 383)(307, 374)(310, 370)(311, 325)(314, 346)(317, 355)(329, 339)(332, 381)(336, 376)(348, 356)(349, 375)(354, 384)(357, 363)(364, 379)(366, 382)
b: (2, 18)(3, 46)(4, 50)(5, 49)(6, 26)(7, 14)(8, 55)(9, 52)(10, 48)(11, 67)(12, 28)(13, 153)(15, 116)(16, 21)(17, 23)(19, 29)(20, 24)(22, 125)(25, 123)(27, 33)(30, 73)(31, 39)(32, 140)(34, 114)(35, 119)(36, 160)(37, 112)(38, 111)(40, 127)(41, 115)(42, 82)(43, 72)(44, 148)(45, 167)(47, 136)(51, 92)(53, 85)(54, 97)(56, 105)(57, 164)(58, 65)(59, 64)(60, 63)(61, 131)(66, 161)(68, 107)(69, 165)(70, 128)(71, 149)(74, 100)(75, 102)(76, 101)(77, 122)(78, 93)(79, 90)(80, 99)(81, 163)(83, 168)(84, 98)(86, 151)(87, 95)(88, 173)(89, 129)(91, 166)(94, 110)(103, 108)(104, 134)(106, 144)(109, 135)(113, 172)(117, 179)(118, 146)(120, 184)(121, 158)(124, 154)(126, 141)(130, 183)(132, 185)(137, 155)(138, 145)(142, 192)(143, 150)(147, 156)(157, 190)(159, 177)(162, 182)(169, 189)(170, 178)(171, 181)(174, 188)(175, 180)(176, 187)(193, 275)(194, 297)(195, 196)(197, 316)(198, 382)(199, 357)(200, 350)(201, 219)(202, 317)(203, 286)(204, 346)(205, 259)(206, 207)(208, 324)(209, 381)(210, 222)(211, 221)(212, 252)(213, 303)(214, 273)(215, 278)(216, 318)(217, 379)(218, 352)(220, 233)(223, 309)(224, 291)(225, 369)(226, 341)(227, 319)(228, 355)(229, 378)(230, 269)(231, 284)(232, 274)(234, 261)(235, 281)(236, 245)(237, 304)(238, 372)(239, 293)(240, 276)(241, 266)(242, 248)(243, 247)(244, 329)(246, 351)(249, 337)(250, 377)(251, 305)(253, 290)(254, 340)(255, 272)(256, 358)(257, 374)(258, 353)(260, 322)(262, 330)(263, 311)(264, 356)(265, 313)(267, 326)(268, 298)(270, 359)(271, 277)(279, 302)(280, 373)(282, 362)(283, 348)(285, 339)(287, 331)(288, 338)(289, 333)(292, 361)(294, 301)(295, 347)(296, 321)(299, 354)(300, 332)(306, 383)(307, 335)(308, 343)(310, 349)(312, 364)(314, 371)(315, 327)(320, 384)(323, 380)(325, 328)(334, 360)(336, 376)(342, 344)(345, 368)(363, 365)(366, 367)(370, 375)
c: (1, 2)(3, 15)(4, 31)(5, 50)(6, 49)(7, 62)(8, 56)(9, 101)(10, 52)(11, 68)(12, 23)(13, 147)(14, 18)(16, 70)(17, 55)(19, 30)(20, 35)(21, 24)(22, 133)(25, 124)(26, 46)(27, 34)(28, 29)(32, 69)(33, 135)(36, 102)(37, 103)(38, 112)(39, 116)(40, 77)(41, 172)(42, 115)(43, 149)(44, 129)(45, 168)(47, 51)(48, 72)(53, 86)(54, 98)(57, 126)(58, 170)(59, 65)(60, 96)(61, 146)(63, 125)(64, 177)(66, 71)(67, 82)(73, 105)(74, 186)(75, 140)(76, 161)(78, 94)(79, 93)(80, 100)(81, 166)(83, 182)(84, 122)(85, 160)(87, 113)(88, 110)(89, 127)(90, 153)(91, 179)(92, 119)(95, 107)(97, 148)(99, 139)(104, 108)(106, 137)(109, 143)(111, 145)(114, 155)(117, 162)(118, 164)(120, 185)(121, 159)(123, 131)(128, 136)(130, 158)(132, 190)(134, 175)(138, 180)(141, 154)(142, 152)(144, 150)(151, 165)(156, 173)(157, 176)(163, 167)(169, 181)(171, 187)(174, 192)(178, 183)(184, 189)(188, 191)(193, 339)(194, 321)(195, 331)(196, 288)(197, 340)(198, 252)(199, 350)(200, 207)(201, 314)(202, 223)(203, 294)(204, 376)(205, 281)(206, 308)(208, 304)(209, 259)(210, 355)(211, 283)(213, 342)(214, 275)(215, 363)(216, 348)(217, 326)(218, 232)(219, 227)(220, 311)(221, 347)(222, 325)(225, 286)(226, 258)(228, 330)(229, 271)(230, 374)(231, 267)(234, 328)(235, 250)(236, 384)(239, 362)(240, 317)(241, 332)(242, 371)(243, 290)(244, 344)(245, 313)(246, 335)(247, 309)(248, 270)(249, 320)(251, 341)(253, 380)(255, 260)(256, 307)(257, 377)(261, 312)(262, 364)(263, 291)(264, 287)(265, 346)(266, 357)(268, 367)(269, 381)(272, 372)(274, 310)(276, 323)(277, 351)(278, 375)(280, 293)(282, 303)(284, 349)(289, 356)(295, 298)(296, 327)(297, 369)(300, 343)(301, 315)(302, 316)(306, 338)(318, 366)(319, 334)(324, 361)(329, 373)(333, 383)(336, 337)(345, 378)(352, 379)(354, 382)(358, 368)(359, 360)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 525 ]
384
-1 342 212 344 252
-2 198 244 212 213
-3 283 273 296 362
-4 298 203 339 329
-5 344 367 225 285
-6 297 213 193 318
-7 299 280 382 362
-8 355 203 316 284
-9 220 264 295 274
-10 221 233 289 218
-11 201 357 217 340
-12 297 254 364 217
-13 253 234 344 314
-14 198 354 282 373
-15 211 239 327 273
-16 298 211 245 317
-17 330 267 225 340
-18 303 382 252 329
-19 234 316 218 296
-20 309 320 366 295
-21 221 202 268 236
-22 242 265 376 201
-23 254 369 326 262
-24 223 367 347 384
-25 277 215 314 350
-26 275 303 194 216
-27 364 365 194 351
-28 312 379 194 340
-29 352 321 261 197
-30 232 302 327 328
-31 193 294 295 373
-32 343 256 224 193
-33 297 363 246 312
-34 277 321 365 262
-35 298 247 249 318
-36 220 200 378 273
-37 212 333 346 304
-38 198 376 356 237
-39 275 301 280 347
-40 341 301 260 284
-41 206 316 360 274
-42 319 200 218 340
-43 348 217 306 263
-44 353 255 225 217
-45 344 377 269 306
-46 321 214 282 348
-47 211 204 380 318
-48 220 352 211 333
-49 342 366 369 339
-50 286 244 268 285
-51 253 376 366 283
-52 232 233 356 347
-53 220 277 357 193
-54 341 194 238 218
-55 231 286 228 197
-56 210 302 294 349
-57 332 256 334 215
-58 255 377 246 336
-59 277 235 204 372
-60 319 236 249 359
-61 378 248 370 206
-62 299 354 293 239
-63 245 270 227 337
-64 346 281 238 271
-65 376 250 272 351
-66 231 366 224 196
-67 199 254 379 219
-68 266 314 326 197
-69 300 224 339 307
-70 313 283 240 295
-71 288 267 224 318
-72 311 379 283 383
-73 279 325 315 274
-74 330 210 331 288
-75 214 368 206 263
-76 331 268 349 263
-77 255 315 349 251
-78 330 223 359 362
-79 364 247 248 303
-80 264 364 325 306
-81 289 257 281 303
-82 352 254 227 350
-83 209 374 288 329
-84 305 372 274 296
-85 275 199 233 271
-86 266 311 339 351
-87 300 279 248 284
-88 319 210 280 240
-89 267 322 203 258
-90 242 243 213 312
-91 264 259 250 362
-92 290 367 336 348
-93 309 270 282 262
-94 202 228 239 360
-95 231 242 332 302
-96 320 334 360 384
-97 297 352 226 372
-98 232 321 238 251
-99 312 356 328 383
-100 287 222 338 262
-101 287 298 310 311
-102 311 345 207 273
-103 265 212 383 208
-104 198 245 338 361
-105 222 310 279 301
-106 210 375 301 345
-107 267 316 371 241
-108 313 324 306 252
-109 234 278 225 307
-110 355 334 293 317
-111 264 336 304 382
-112 289 204 237 252
-113 343 279 270 349
-114 330 363 271 296
-115 232 334 207 197
-116 221 214 293 315
-117 331 281 293 381
-118 375 343 368 359
-119 243 268 216 337
-120 202 281 206 251
-121 209 245 345 272
-122 310 272 305 327
-123 200 278 271 371
-124 363 199 201 351
-125 313 248 336 219
-126 319 363 241 307
-127 231 322 226 294
-128 265 276 347 348
-129 286 353 260 326
-130 269 358 260 384
-131 242 375 207 229
-132 309 343 226 259
-133 346 204 314 371
-134 288 236 292 382
-135 335 215 369 261
-136 221 323 346 216
-137 278 355 378 315
-138 331 299 324 249
-139 234 289 333 261
-140 275 308 291 358
-141 266 365 335 227
-142 243 237 380 208
-143 286 375 256 328
-144 222 368 370 294
-145 287 354 337 208
-146 308 345 270 370
-147 244 201 380 328
-148 258 379 369 272
-149 291 216 326 338
-150 203 325 358 370
-151 246 241 263 285
-152 253 290 237 304
-153 342 290 261 371
-154 365 246 357 219
-155 215 228 327 229
-156 323 325 219 329
-157 243 353 332 381
-158 255 236 368 381
-159 378 313 259 372
-160 233 214 229 350
-161 367 291 195 284
-162 269 280 205 195
-163 374 333 213 235
-164 278 300 358 360
-165 332 291 335 285
-166 377 356 205 282
-167 342 250 383 230
-168 244 257 381 338
-169 276 377 251 350
-170 257 335 260 337
-171 374 357 226 380
-172 308 310 302 359
-173 276 222 227 373
-174 276 309 361 208
-175 354 292 196 384
-176 353 290 269 241
-177 265 205 238 229
-178 374 322 249 307
-179 209 287 235 239
-180 320 299 195 361
-181 341 199 257 323
-182 259 196 230 373
-183 320 256 322 230
-184 235 305 207 317
-185 308 341 223 205
-186 355 195 228 196
-187 253 266 258 230
-188 223 324 292 240
-189 200 250 305 240
-190 209 300 247 258
-191 202 292 317 361
-192 323 247 324 304
-193 6 31 53 32
-194 26 27 28 54
-195 180 161 162 186
-196 66 182 175 186
-197 55 68 115 29
-198 2 14 38 104
-199 67 124 181 85
-200 123 189 36 42
-201 11 22 124 147
-202 191 94 21 120
-203 89 4 150 8
-204 133 112 47 59
-205 166 177 162 185
-206 61 41 75 120
-207 102 115 184 131
-208 145 103 174 142
-209 121 179 190 83
-210 88 56 106 74
-211 47 15 48 16
-212 1 2 37 103
-213 2 90 6 163
-214 46 116 160 75
-215 155 57 25 135
-216 26 136 149 119
-217 11 44 12 43
-218 19 42 10 54
-219 154 67 156 125
-220 36 48 9 53
-221 136 116 10 21
-222 100 144 105 173
-223 78 188 24 185
-224 66 69 71 32
-225 44 5 17 109
-226 132 127 171 97
-227 82 63 173 141
-228 55 155 94 186
-229 155 177 160 131
-230 187 167 182 183
-231 55 66 127 95
-232 115 30 52 98
-233 160 52 85 10
-234 13 139 19 109
-235 179 59 184 163
-236 134 158 60 21
-237 112 38 152 142
-238 177 64 54 98
-239 179 15 94 62
-240 88 188 189 70
-241 176 126 107 151
-242 22 90 95 131
-243 90 157 119 142
-244 2 168 147 50
-245 121 16 104 63
-246 33 154 58 151
-247 35 79 190 192
-248 79 125 61 87
-249 35 178 60 138
-250 167 189 91 65
-251 77 169 98 120
-252 1 112 18 108
-253 187 13 51 152
-254 12 23 67 82
-255 44 77 58 158
-256 143 57 183 32
-257 168 81 170 181
-258 187 89 190 148
-259 132 91 159 182
-260 170 40 129 130
-261 135 29 139 153
-262 23 34 100 93
-263 151 75 43 76
-264 111 80 91 9
-265 22 177 103 128
-266 187 68 86 141
-267 89 71 17 107
-268 50 119 21 76
-269 176 45 162 130
-270 113 146 93 63
-271 123 114 85 64
-272 121 122 148 65
-273 3 36 102 15
-274 73 84 41 9
-275 26 39 85 140
-276 169 128 173 174
-277 34 25 59 53
-278 123 137 109 164
-279 113 105 73 87
-280 88 39 7 162
-281 81 117 64 120
-282 166 46 14 93
-283 3 70 72 51
-284 40 161 8 87
-285 165 5 50 151
-286 55 143 50 129
-287 100 101 145 179
-288 134 71 83 74
-289 112 81 139 10
-290 176 92 152 153
-291 165 149 161 140
-292 188 134 191 175
-293 110 116 62 117
-294 56 144 127 31
-295 70 9 20 31
-296 3 114 84 19
-297 33 12 6 97
-298 35 101 4 16
-299 180 138 7 62
-300 69 190 87 164
-301 39 105 40 106
-302 56 95 172 30
-303 79 26 81 18
-304 111 37 192 152
-305 122 189 84 184
-306 45 80 108 43
-307 178 69 126 109
-308 146 172 140 185
-309 132 93 20 174
-310 122 101 105 172
-311 101 102 72 86
-312 33 99 90 28
-313 70 125 159 108
-314 133 13 68 25
-315 77 137 116 73
-316 19 107 41 8
-317 110 191 16 184
-318 35 47 71 6
-319 88 60 126 42
-320 180 183 96 20
-321 34 46 29 98
-322 89 178 127 183
-323 156 136 181 192
-324 188 192 138 108
-325 156 80 73 150
-326 23 68 149 129
-327 122 155 15 30
-328 99 143 147 30
-329 156 4 83 18
-330 78 114 17 74
-331 138 117 74 76
-332 165 57 157 95
-333 37 48 139 163
-334 110 57 115 96
-335 165 135 170 141
-336 111 58 92 125
-337 145 170 63 119
-338 100 168 104 149
-339 69 4 49 86
-340 11 17 28 42
-341 181 40 185 54
-342 1 167 49 153
-343 132 113 118 32
-344 1 45 13 5
-345 121 102 146 106
-346 133 37 136 64
-347 24 39 128 52
-348 46 92 128 43
-349 77 56 113 76
-350 25 169 82 160
-351 124 27 86 65
-352 48 82 29 97
-353 44 176 157 129
-354 145 14 62 175
-355 110 137 8 186
-356 99 166 38 52
-357 11 154 171 53
-358 150 140 130 164
-359 78 60 172 118
-360 94 41 96 164
-361 180 191 104 174
-362 78 3 91 7
-363 33 124 114 126
-364 12 79 80 27
-365 154 34 27 141
-366 66 49 51 20
-367 24 92 5 161
-368 144 158 118 75
-369 23 135 49 148
-370 144 146 61 150
-371 133 123 107 153
-372 59 159 84 97
-373 14 182 173 31
-374 178 83 171 163
-375 143 106 118 131
-376 22 38 51 65
-377 45 166 58 169
-378 36 137 159 61
-379 67 148 28 72
-380 47 147 171 142
-381 157 168 158 117
-382 111 134 7 18
-383 99 167 103 72
-384 24 96 130 175
0

**************