[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 384, 531 ] =
BGCG(UG(ATD[192,199]);K1;5).
(I) Following is a form readable by MAGMA:
g:=Graph<384|{ {192, 208}, {143, 206}, {165, 228}, {152, 217}, {161, 227}, {177,
243}, {173, 239}, {139, 200}, {131, 199}, {133, 193}, {128, 197}, {170, 239},
{149, 208}, {131, 196}, {155, 220}, {157, 213}, {185, 241}, {159, 215}, {134,
207}, {138, 195}, {143, 198}, {134, 204}, {134, 205}, {188, 247}, {176, 251},
{138, 199}, {147, 222}, {181, 229}, {153, 202}, {167, 243}, {176, 229}, {177,
228}, {158, 198}, {186, 226}, {183, 239}, {142, 212}, {191, 229}, {148, 206},
{147, 201}, {132, 223}, {183, 236}, {133, 222}, {136, 211}, {145, 205}, {158,
194}, {169, 247}, {156, 252}, {157, 254}, {135, 226}, {158, 248}, {169, 207},
{168, 206}, {190, 214}, {175, 198}, {141, 230}, {154, 241}, {187, 215}, {150,
251}, {170, 199}, {153, 233}, {191, 207}, {131, 242}, {131, 241}, {180, 198},
{135, 244}, {161, 213}, {186, 206}, {129, 244}, {134, 254}, {148, 236}, {159,
229}, {173, 215}, {139, 247}, {175, 211}, {172, 208}, {163, 222}, {135, 249},
{141, 243}, {147, 236}, {82, 210}, {121, 249}, {72, 201}, {96, 226}, {116, 246},
{106, 238}, {78, 200}, {90, 220}, {89, 223}, {77, 202}, {86, 209}, {104, 224},
{110, 230}, {116, 252}, {111, 230}, {119, 254}, {94, 213}, {65, 205}, {88, 212},
{126, 242}, {102, 235}, {74, 196}, {103, 233}, {75, 196}, {108, 227}, {116,
251}, {127, 240}, {65, 208}, {83, 194}, {101, 244}, {124, 237}, {79, 220}, {89,
202}, {119, 228}, {73, 221}, {76, 217}, {109, 248}, {68, 210}, {97, 249}, {80,
201}, {90, 195}, {117, 239}, {108, 247}, {114, 233}, {99, 254}, {79, 209}, {72,
232}, {108, 205}, {67, 225}, {84, 246}, {68, 230}, {127, 221}, {67, 224}, {100,
193}, {119, 210}, {105, 207}, {67, 228}, {81, 246}, {74, 237}, {95, 248}, {114,
213}, {65, 233}, {117, 222}, {84, 249}, {98, 204}, {120, 214}, {80, 224}, {95,
238}, {71, 245}, {97, 211}, {126, 204}, {70, 245}, {88, 235}, {73, 253}, {72,
253}, {66, 244}, {69, 243}, {109, 219}, {87, 224}, {96, 215}, {66, 251}, {81,
232}, {76, 245}, {70, 255}, {124, 197}, {66, 248}, {89, 227}, {114, 200}, {78,
245}, {127, 196}, {125, 193}, {79, 241}, {103, 217}, {46, 238}, {55, 246}, {37,
231}, {40, 234}, {33, 226}, {56, 252}, {36, 225}, {25, 223}, {60, 250}, {20,
221}, {1, 203}, {38, 234}, {44, 225}, {5, 203}, {32, 238}, {31, 209}, {26, 212},
{21, 219}, {19, 221}, {21, 197}, {55, 231}, {9, 218}, {56, 235}, {48, 227}, {17,
194}, {14, 219}, {15, 218}, {18, 197}, {40, 255}, {39, 240}, {27, 195}, {32,
250}, {1, 218}, {12, 209}, {33, 252}, {26, 199}, {50, 236}, {20, 203}, {8, 232},
{57, 216}, {16, 242}, {54, 212}, {9, 237}, {37, 193}, {63, 218}, {14, 232}, {57,
223}, {10, 237}, {2, 234}, {62, 214}, {23, 253}, {54, 220}, {1, 234}, {18, 253},
{35, 204}, {29, 242}, {23, 231}, {34, 211}, {57, 200}, {21, 231}, {56, 202},
{43, 217}, {36, 214}, {3, 240}, {43, 216}, {24, 235}, {23, 225}, {63, 201}, {52,
194}, {46, 216}, {7, 240}, {3, 250}, {58, 195}, {33, 219}, {34, 216}, {4, 255},
{3, 255}, {55, 203}, {6, 250}, {45, 210}, {13, 269}, {5, 260}, {51, 306}, {102,
359}, {123, 378}, {34, 288}, {77, 335}, {38, 293}, {111, 364}, {63, 315}, {126,
378}, {45, 296}, {91, 350}, {12, 266}, {84, 338}, {82, 340}, {27, 285}, {107,
365}, {38, 289}, {90, 349}, {53, 317}, {92, 341}, {125, 372}, {10, 256}, {40,
290}, {16, 282}, {100, 366}, {15, 260}, {64, 331}, {41, 290}, {121, 370}, {63,
307}, {89, 341}, {83, 351}, {24, 277}, {38, 296}, {39, 297}, {94, 336}, {42,
293}, {86, 345}, {99, 364}, {113, 382}, {22, 262}, {65, 337}, {53, 293}, {109,
381}, {113, 353}, {90, 331}, {20, 262}, {49, 291}, {41, 315}, {98, 368}, {110,
380}, {113, 355}, {19, 256}, {76, 351}, {53, 294}, {32, 308}, {91, 335}, {99,
375}, {120, 364}, {8, 285}, {66, 343}, {37, 307}, {64, 342}, {94, 328}, {44,
315}, {87, 320}, {98, 373}, {52, 300}, {32, 313}, {99, 378}, {27, 257}, {46,
309}, {95, 324}, {60, 288}, {29, 256}, {51, 302}, {26, 261}, {77, 338}, {75,
340}, {59, 292}, {37, 314}, {111, 368}, {9, 297}, {74, 362}, {50, 274}, {25,
312}, {96, 321}, {105, 328}, {11, 297}, {87, 372}, {52, 272}, {92, 376}, {52,
273}, {97, 324}, {5, 291}, {166, 384}, {64, 358}, {50, 276}, {30, 312}, {28,
315}, {85, 370}, {17, 313}, {45, 261}, {114, 346}, {115, 347}, {117, 349}, {51,
282}, {101, 332}, {11, 289}, {91, 369}, {10, 289}, {44, 263}, {35, 264}, {94,
373}, {86, 378}, {111, 323}, {118, 346}, {14, 291}, {71, 362}, {20, 314}, {174,
384}, {59, 277}, {118, 344}, {18, 317}, {71, 360}, {42, 261}, {40, 263}, {106,
325}, {102, 342}, {27, 298}, {44, 285}, {8, 314}, {42, 280}, {11, 312}, {58,
265}, {30, 299}, {61, 264}, {47, 281}, {54, 256}, {93, 363}, {101, 339}, {61,
261}, {4, 317}, {13, 308}, {92, 357}, {103, 350}, {115, 330}, {7, 317}, {17,
299}, {93, 359}, {24, 291}, {101, 350}, {123, 320}, {72, 372}, {121, 325}, {78,
371}, {88, 357}, {85, 360}, {93, 352}, {4, 314}, {80, 366}, {6, 312}, {62, 257},
{93, 354}, {109, 338}, {2, 322}, {28, 348}, {71, 262}, {76, 269}, {75, 266},
{57, 379}, {62, 380}, {51, 368}, {39, 355}, {50, 374}, {7, 322}, {25, 351}, {46,
360}, {105, 302}, {43, 355}, {82, 282}, {47, 359}, {112, 313}, {122, 305}, {2,
334}, {58, 374}, {42, 358}, {97, 300}, {120, 309}, {123, 310}, {12, 322}, {91,
277}, {88, 278}, {60, 370}, {100, 298}, {30, 337}, {83, 284}, {39, 360}, {31,
334}, {5, 343}, {64, 274}, {14, 348}, {16, 323}, {75, 280}, {49, 354}, {36,
375}, {28, 335}, {53, 353}, {87, 259}, {9, 348}, {126, 296}, {31, 328}, {47,
376}, {127, 296}, {4, 348}, {26, 322}, {118, 302}, {21, 332}, {80, 265}, {61,
356}, {70, 284}, {34, 377}, {69, 286}, {48, 363}, {31, 323}, {96, 316}, {19,
334}, {25, 327}, {105, 310}, {112, 303}, {73, 297}, {23, 374}, {107, 266}, {108,
269}, {112, 273}, {49, 339}, {54, 340}, {92, 318}, {7, 356}, {60, 351}, {49,
338}, {95, 316}, {61, 345}, {85, 305}, {116, 272}, {29, 376}, {78, 299}, {45,
328}, {41, 332}, {122, 287}, {13, 363}, {83, 309}, {81, 311}, {121, 287}, {24,
383}, {70, 289}, {120, 287}, {2, 362}, {17, 377}, {98, 267}, {69, 303}, {79,
293}, {68, 303}, {73, 290}, {6, 362}, {74, 294}, {59, 343}, {33, 333}, {18,
382}, {119, 283}, {22, 379}, {36, 329}, {35, 334}, {113, 284}, {10, 356}, {48,
350}, {22, 377}, {69, 309}, {86, 294}, {84, 292}, {100, 276}, {103, 278}, {115,
258}, {11, 377}, {68, 310}, {19, 353}, {107, 281}, {15, 380}, {81, 290}, {77,
318}, {58, 329}, {112, 259}, {8, 380}, {82, 294}, {56, 332}, {16, 356}, {12,
376}, {106, 286}, {123, 271}, {28, 361}, {30, 363}, {104, 285}, {122, 271}, {13,
379}, {59, 333}, {48, 326}, {22, 353}, {35, 340}, {3, 379}, {55, 335}, {6, 382},
{15, 374}, {107, 274}, {122, 259}, {125, 260}, {43, 337}, {104, 274}, {106,
272}, {110, 276}, {115, 265}, {124, 262}, {125, 263}, {29, 358}, {104, 275},
{118, 269}, {124, 263}, {47, 339}, {41, 343}, {85, 299}, {62, 320}, {102, 280},
{1, 382}, {117, 266}, {139, 267}, {144, 273}, {158, 287}, {155, 281}, {177,
307}, {128, 260}, {157, 282}, {185, 318}, {184, 319}, {173, 298}, {167, 288},
{162, 298}, {146, 283}, {137, 259}, {184, 306}, {164, 302}, {157, 279}, {154,
278}, {151, 280}, {132, 278}, {191, 301}, {173, 319}, {147, 257}, {136, 284},
{133, 275}, {187, 301}, {186, 300}, {169, 319}, {160, 310}, {142, 281}, {168,
319}, {150, 270}, {140, 277}, {169, 304}, {155, 258}, {146, 264}, {189, 295},
{188, 295}, {192, 347}, {140, 272}, {176, 300}, {137, 276}, {186, 295}, {178,
303}, {190, 288}, {166, 313}, {174, 305}, {179, 275}, {163, 258}, {182, 279},
{145, 306}, {190, 283}, {150, 304}, {149, 306}, {172, 267}, {167, 271}, {150,
316}, {168, 258}, {165, 271}, {143, 292}, {188, 279}, {160, 267}, {156, 311},
{144, 316}, {162, 268}, {190, 273}, {174, 286}, {188, 268}, {177, 257}, {175,
286}, {149, 295}, {187, 265}, {189, 270}, {174, 283}, {192, 373}, {129, 311},
{130, 308}, {128, 311}, {160, 279}, {149, 301}, {136, 305}, {183, 270}, {181,
268}, {148, 301}, {137, 307}, {178, 264}, {159, 292}, {168, 275}, {136, 308},
{179, 270}, {129, 318}, {179, 268}, {143, 304}, {152, 344}, {189, 381}, {181,
373}, {145, 336}, {151, 341}, {67, 384}, {141, 329}, {170, 366}, {164, 352},
{130, 327}, {178, 375}, {163, 358}, {163, 357}, {154, 349}, {142, 326}, {145,
345}, {154, 339}, {180, 381}, {151, 349}, {166, 364}, {164, 367}, {133, 329},
{152, 341}, {161, 367}, {191, 367}, {146, 320}, {171, 383}, {187, 365}, {171,
371}, {182, 367}, {159, 325}, {144, 333}, {179, 365}, {148, 331}, {130, 355},
{144, 370}, {184, 346}, {178, 336}, {175, 333}, {166, 324}, {146, 368}, {167,
324}, {132, 352}, {140, 361}, {151, 369}, {165, 323}, {161, 327}, {138, 365},
{162, 330}, {128, 361}, {162, 331}, {153, 371}, {139, 352}, {172, 327}, {183,
347}, {156, 369}, {182, 347}, {171, 326}, {110, 384}, {135, 361}, {138, 357},
{185, 342}, {181, 346}, {192, 304}, {130, 371}, {140, 381}, {171, 344}, {172,
344}, {155, 366}, {180, 321}, {165, 336}, {164, 337}, {182, 321}, {189, 325},
{141, 372}, {184, 321}, {160, 345}, {152, 354}, {176, 330}, {132, 383}, {170,
342}, {129, 383}, {180, 330}, {156, 354}, {153, 359}, {137, 375}, {142, 369},
{185, 326} }>;
(II) A more general form is to represent the graph as the orbit of {192, 208}
under the group generated by the following permutations:
a: (1, 2, 6)(3, 9, 19)(4, 10, 22)(5, 12, 25)(7, 11, 20)(8, 16, 34)(13, 28,
54)(14, 29, 57)(15, 31, 60)(17, 37, 61)(18, 38, 71)(21, 42, 78)(23, 45, 85)(24,
47, 89)(26, 30, 55)(27, 51, 97)(32, 63, 35)(33, 64, 114)(36, 68, 122)(39, 73,
127)(40, 74, 113)(41, 75, 130)(43, 81, 131)(44, 82, 136)(46, 72, 126)(48, 91,
142)(49, 92, 132)(50, 94, 144)(52, 100, 145)(53, 70, 124)(56, 102, 153)(58, 105,
121)(59, 107, 161)(62, 111, 167)(65, 116, 170)(66, 117, 172)(67, 119, 174)(69,
87, 99)(76, 128, 79)(77, 88, 93)(80, 134, 106)(83, 125, 86)(84, 138, 164)(90,
118, 135)(95, 147, 98)(96, 148, 181)(101, 151, 171)(103, 156, 185)(104, 157,
175)(108, 140, 155)(109, 163, 139)(110, 165, 190)(112, 137, 178)(115, 169,
189)(120, 141, 123)(129, 154, 152)(133, 160, 158)(143, 179, 182)(146, 166,
177)(149, 176, 173)(150, 183, 192)(159, 187, 191)(162, 184, 186)(168, 188,
180)(193, 345, 194)(195, 302, 249)(196, 355, 290)(197, 293, 245)(198, 275,
279)(199, 337, 246)(200, 219, 358)(201, 204, 238)(202, 235, 359)(203, 322,
312)(205, 272, 366)(206, 268, 321)(207, 325, 265)(208, 251, 239)(209, 351,
260)(210, 305, 225)(211, 285, 282)(212, 363, 335)(213, 333, 274)(214, 230,
271)(215, 301, 229)(216, 232, 242)(217, 311, 241)(218, 334, 250)(220, 269,
361)(221, 240, 297)(222, 267, 248)(223, 291, 376)(224, 254, 286)(226, 331,
346)(227, 277, 281)(228, 283, 384)(231, 261, 299)(233, 252, 342)(234, 362,
382)(236, 373, 316)(237, 353, 255)(243, 320, 364)(244, 349, 344)(247, 381,
258)(253, 296, 360)(256, 379, 348)(257, 368, 324)(259, 375, 303)(262, 317,
289)(263, 294, 284)(264, 313, 307)(266, 327, 343)(270, 347, 304)(273, 276,
336)(278, 354, 318)(280, 371, 332)(287, 329, 310)(288, 380, 323)(292, 365,
367)(295, 330, 319)(298, 306, 300)(308, 315, 340)(309, 372, 378)(314, 356,
377)(326, 350, 369)(328, 370, 374)(338, 357, 352)(339, 341, 383) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 6)(3, 7)(5, 15)(8, 14)(9, 20)(10, 22)(11, 19)(12, 60)(13, 61)(16, 57)(17,
54)(18, 40)(21, 44)(23, 41)(24, 110)(25, 31)(26, 32)(27, 109)(28, 37)(29,
34)(30, 35)(33, 104)(36, 101)(38, 113)(39, 127)(42, 136)(43, 126)(45, 130)(46,
131)(47, 190)(48, 178)(49, 62)(50, 59)(51, 139)(52, 155)(53, 70)(55, 63)(56,
67)(58, 66)(64, 175)(65, 134)(68, 171)(69, 185)(71, 74)(72, 81)(75, 85)(76,
86)(77, 177)(78, 82)(79, 83)(80, 116)(84, 147)(87, 156)(88, 166)(89, 165)(90,
158)(91, 137)(92, 167)(93, 146)(94, 161)(95, 138)(96, 179)(97, 163)(98, 164)(99,
103)(100, 140)(102, 174)(105, 172)(106, 170)(107, 144)(108, 145)(111, 132)(112,
142)(114, 157)(115, 176)(117, 121)(118, 160)(119, 153)(120, 154)(122, 151)(123,
152)(125, 128)(129, 141)(133, 135)(143, 148)(149, 169)(150, 187)(159, 183)(162,
180)(168, 186)(173, 189)(181, 182)(184, 188)(191, 192)(193, 361)(194, 220)(195,
248)(196, 360)(197, 263)(198, 331)(199, 238)(200, 282)(201, 246)(202, 228)(203,
218)(204, 337)(207, 208)(209, 351)(210, 371)(211, 358)(212, 313)(214, 339)(215,
270)(216, 242)(217, 378)(219, 285)(221, 297)(222, 249)(223, 323)(224, 252)(225,
332)(226, 275)(227, 336)(229, 347)(230, 383)(231, 315)(233, 254)(234, 382)(235,
384)(236, 292)(237, 262)(239, 325)(241, 309)(243, 318)(244, 329)(245, 294)(247,
306)(250, 322)(251, 265)(253, 290)(255, 317)(256, 377)(257, 338)(258, 300)(259,
369)(261, 308)(264, 363)(266, 370)(267, 302)(268, 321)(269, 345)(271, 341)(272,
366)(273, 281)(274, 333)(276, 277)(278, 364)(279, 346)(280, 305)(283, 359)(284,
293)(286, 342)(287, 349)(288, 376)(289, 353)(291, 380)(295, 319)(296, 355)(298,
381)(299, 340)(301, 304)(303, 326)(307, 335)(310, 344)(311, 372)(312, 334)(314,
348)(316, 365)(320, 354)(324, 357)(327, 328)(343, 374)(350, 375)(352, 368)(356,
379)(367, 373)
c: (2, 15)(3, 14)(5, 6)(7, 8)(9, 40)(10, 44)(11, 41)(12, 110)(13, 109)(16,
104)(17, 101)(18, 20)(19, 23)(21, 22)(24, 60)(25, 59)(26, 62)(27, 61)(28,
70)(29, 67)(30, 66)(31, 50)(32, 49)(33, 57)(34, 56)(35, 58)(36, 54)(37, 53)(38,
63)(39, 81)(42, 177)(43, 116)(45, 147)(46, 156)(47, 166)(48, 158)(51, 179)(52,
103)(55, 113)(64, 165)(65, 176)(68, 117)(69, 151)(71, 128)(72, 127)(74, 125)(75,
141)(76, 140)(77, 136)(78, 135)(79, 137)(80, 126)(82, 133)(83, 91)(84, 130)(85,
129)(86, 100)(87, 131)(88, 190)(89, 175)(90, 178)(92, 174)(93, 95)(94, 148)(96,
139)(97, 153)(98, 187)(99, 155)(102, 167)(105, 183)(106, 152)(107, 111)(108,
180)(112, 154)(114, 186)(115, 134)(118, 189)(119, 163)(120, 142)(121, 171)(122,
185)(123, 170)(132, 144)(138, 146)(143, 161)(145, 162)(149, 181)(150, 164)(157,
168)(159, 172)(160, 173)(169, 182)(184, 188)(191, 192)(193, 294)(194, 350)(195,
264)(196, 372)(197, 262)(198, 227)(199, 320)(200, 226)(201, 296)(202, 211)(203,
382)(204, 265)(205, 330)(206, 213)(207, 347)(208, 229)(209, 276)(210, 222)(212,
214)(215, 267)(216, 252)(217, 272)(218, 234)(219, 379)(220, 375)(221, 253)(223,
333)(224, 242)(225, 256)(228, 358)(230, 266)(231, 353)(232, 240)(233, 300)(235,
288)(236, 328)(237, 263)(238, 354)(239, 310)(241, 259)(243, 280)(244, 299)(245,
361)(246, 355)(247, 321)(248, 363)(249, 371)(250, 291)(251, 337)(254, 258)(255,
348)(257, 261)(260, 362)(268, 306)(269, 381)(270, 302)(271, 342)(273, 278)(274,
323)(275, 282)(277, 351)(279, 319)(281, 364)(283, 357)(284, 335)(285, 356)(286,
341)(287, 326)(289, 315)(290, 297)(292, 327)(293, 307)(295, 346)(298, 345)(301,
373)(303, 349)(304, 367)(305, 318)(308, 338)(309, 369)(311, 360)(312, 343)(313,
339)(314, 317)(316, 352)(322, 380)(324, 359)(325, 344)(329, 340)(331, 336)(332,
377)(334, 374)(365, 368)(366, 378)(370, 383)(376, 384)
C4[ 384, 531 ]
384
-1 234 203 382 218
-2 234 322 334 362
-3 255 379 250 240
-4 255 314 348 317
-5 343 203 291 260
-6 312 250 382 362
-7 322 356 240 317
-8 232 314 380 285
-9 297 237 348 218
-10 256 289 356 237
-11 297 289 377 312
-12 209 266 376 322
-13 308 363 269 379
-14 232 291 348 219
-15 374 380 260 218
-16 242 323 356 282
-17 299 377 313 194
-18 253 382 317 197
-19 221 353 256 334
-20 221 203 314 262
-21 231 332 197 219
-22 353 377 379 262
-23 231 253 374 225
-24 277 235 291 383
-25 223 312 327 351
-26 199 212 322 261
-27 298 257 195 285
-28 335 315 348 361
-29 242 376 256 358
-30 363 299 312 337
-31 209 323 334 328
-32 308 313 238 250
-33 333 226 219 252
-34 211 288 377 216
-35 264 334 204 340
-36 375 214 225 329
-37 231 193 314 307
-38 234 289 293 296
-39 297 355 360 240
-40 255 234 290 263
-41 332 343 290 315
-42 280 358 293 261
-43 355 216 337 217
-44 225 315 263 285
-45 210 261 328 296
-46 309 216 238 360
-47 376 281 359 339
-48 363 227 326 350
-49 354 291 338 339
-50 374 276 236 274
-51 302 368 282 306
-52 300 194 272 273
-53 353 293 294 317
-54 220 212 256 340
-55 231 246 203 335
-56 332 202 235 252
-57 200 223 379 216
-58 374 265 195 329
-59 277 343 333 292
-60 288 370 250 351
-61 264 345 356 261
-62 320 257 214 380
-63 201 315 218 307
-64 331 342 358 274
-65 233 205 337 208
-66 244 343 248 251
-67 224 225 228 384
-68 210 310 303 230
-69 286 243 309 303
-70 255 245 289 284
-71 245 360 262 362
-72 253 232 201 372
-73 253 297 221 290
-74 237 294 196 362
-75 266 280 196 340
-76 245 269 217 351
-77 202 335 338 318
-78 200 299 245 371
-79 209 220 293 241
-80 265 201 366 224
-81 232 311 246 290
-82 210 282 294 340
-83 309 194 284 351
-84 246 292 249 338
-85 299 370 305 360
-86 209 345 378 294
-87 320 224 259 372
-88 212 278 235 357
-89 341 223 202 227
-90 220 331 195 349
-91 277 335 369 350
-92 341 376 357 318
-93 352 363 354 359
-94 213 336 328 373
-95 324 248 238 316
-96 321 215 226 316
-97 211 300 324 249
-98 267 368 204 373
-99 254 364 375 378
-100 276 298 366 193
-101 244 332 339 350
-102 342 235 280 359
-103 233 278 217 350
-104 275 224 274 285
-105 310 302 207 328
-106 286 325 238 272
-107 266 365 281 274
-108 247 269 205 227
-109 248 381 338 219
-110 276 380 230 384
-111 364 323 368 230
-112 313 259 303 273
-113 353 355 382 284
-114 200 233 213 346
-115 330 265 258 347
-116 246 272 251 252
-117 222 266 239 349
-118 344 269 302 346
-119 210 254 228 283
-120 287 309 364 214
-121 287 325 249 370
-122 287 259 271 305
-123 320 310 378 271
-124 237 262 197 263
-125 193 260 372 263
-126 242 378 204 296
-127 221 196 240 296
-128 311 260 361 197
-129 244 311 383 318
-130 308 355 327 371
-131 242 199 196 241
-132 352 223 278 383
-133 275 222 193 329
-134 254 204 205 207
-135 244 226 249 361
-136 308 211 305 284
-137 276 375 259 307
-138 199 365 357 195
-139 352 200 267 247
-140 277 381 272 361
-141 243 372 230 329
-142 212 281 369 326
-143 198 292 304 206
-144 333 370 316 273
-145 345 336 205 306
-146 264 320 368 283
-147 222 201 257 236
-148 331 301 236 206
-149 301 295 306 208
-150 270 304 316 251
-151 341 280 369 349
-152 341 354 344 217
-153 233 202 359 371
-154 278 349 339 241
-155 220 366 258 281
-156 354 311 369 252
-157 254 213 279 282
-158 198 287 248 194
-159 215 292 325 229
-160 310 267 279 345
-161 213 367 227 327
-162 330 298 331 268
-163 222 258 357 358
-164 352 367 302 337
-165 323 336 271 228
-166 364 313 324 384
-167 243 288 324 271
-168 275 319 258 206
-169 319 247 304 207
-170 199 342 366 239
-171 344 326 371 383
-172 267 344 327 208
-173 319 298 215 239
-174 286 283 305 384
-175 198 286 211 333
-176 330 300 229 251
-177 243 257 228 307
-178 264 375 303 336
-179 275 365 268 270
-180 198 330 321 381
-181 268 346 229 373
-182 321 279 367 347
-183 236 270 347 239
-184 319 321 346 306
-185 342 326 241 318
-186 300 226 206 295
-187 265 365 301 215
-188 268 279 247 295
-189 270 325 381 295
-190 288 214 283 273
-191 301 367 207 229
-192 347 304 208 373
-193 100 133 37 125
-194 158 17 83 52
-195 90 58 27 138
-196 127 74 75 131
-197 124 18 128 21
-198 143 158 180 175
-199 26 170 138 131
-200 78 57 114 139
-201 80 147 72 63
-202 77 56 89 153
-203 55 1 5 20
-204 35 134 126 98
-205 134 145 108 65
-206 143 168 148 186
-207 134 169 191 105
-208 192 149 172 65
-209 12 79 31 86
-210 45 68 82 119
-211 34 136 97 175
-212 88 26 54 142
-213 157 114 94 161
-214 36 190 62 120
-215 187 159 96 173
-216 34 46 57 43
-217 103 152 43 76
-218 1 15 63 9
-219 33 14 21 109
-220 155 79 90 54
-221 127 73 19 20
-222 133 147 117 163
-223 132 89 57 25
-224 67 80 104 87
-225 44 23 67 36
-226 33 135 96 186
-227 89 48 161 108
-228 165 67 177 119
-229 176 191 159 181
-230 110 111 68 141
-231 55 23 37 21
-232 14 81 72 8
-233 103 114 65 153
-234 1 2 38 40
-235 88 56 24 102
-236 147 148 50 183
-237 124 74 9 10
-238 46 95 106 32
-239 170 117 183 173
-240 3 39 127 7
-241 154 79 185 131
-242 16 126 29 131
-243 177 167 69 141
-244 66 101 135 129
-245 78 70 71 76
-246 55 81 116 84
-247 188 169 139 108
-248 66 158 95 109
-249 121 135 84 97
-250 3 60 6 32
-251 66 176 116 150
-252 33 56 156 116
-253 23 72 18 73
-254 99 134 157 119
-255 3 4 70 40
-256 29 19 10 54
-257 177 147 27 62
-258 155 168 115 163
-259 122 112 137 87
-260 15 125 5 128
-261 45 26 61 42
-262 22 124 71 20
-263 44 124 125 40
-264 35 178 146 61
-265 187 58 80 115
-266 12 117 107 75
-267 160 139 172 98
-268 188 179 181 162
-269 13 118 108 76
-270 189 179 150 183
-271 165 122 123 167
-272 116 106 52 140
-273 144 112 190 52
-274 104 50 107 64
-275 133 168 179 104
-276 110 100 137 50
-277 24 91 59 140
-278 88 132 154 103
-279 188 157 160 182
-280 102 151 42 75
-281 155 47 107 142
-282 157 16 82 51
-283 146 190 119 174
-284 113 70 136 83
-285 44 27 104 8
-286 69 106 174 175
-287 121 122 158 120
-288 34 167 190 60
-289 11 70 38 10
-290 81 40 73 41
-291 24 14 5 49
-292 143 59 159 84
-293 79 38 42 53
-294 82 74 53 86
-295 188 189 149 186
-296 45 38 126 127
-297 11 39 73 9
-298 100 27 162 173
-299 78 17 30 85
-300 176 52 97 186
-301 187 191 148 149
-302 105 51 118 164
-303 68 112 178 69
-304 143 169 192 150
-305 122 136 85 174
-306 145 149 51 184
-307 177 37 137 63
-308 13 136 130 32
-309 46 69 83 120
-310 68 123 105 160
-311 156 81 128 129
-312 11 25 6 30
-313 166 112 17 32
-314 4 37 8 20
-315 44 28 41 63
-316 144 95 150 96
-317 4 7 18 53
-318 77 92 129 185
-319 168 169 173 184
-320 123 146 62 87
-321 180 182 96 184
-322 12 2 26 7
-323 165 111 16 31
-324 166 167 95 97
-325 121 189 159 106
-326 48 171 185 142
-327 25 161 172 130
-328 45 94 105 31
-329 133 36 58 141
-330 176 180 115 162
-331 90 148 162 64
-332 56 101 41 21
-333 33 144 59 175
-334 2 35 19 31
-335 55 77 91 28
-336 165 145 178 94
-337 30 43 65 164
-338 77 49 84 109
-339 154 101 47 49
-340 35 82 75 54
-341 89 92 151 152
-342 102 170 64 185
-343 66 59 5 41
-344 171 172 118 152
-345 145 61 160 86
-346 114 181 118 184
-347 115 192 182 183
-348 14 4 28 9
-349 154 90 117 151
-350 101 91 48 103
-351 25 60 83 76
-352 132 93 139 164
-353 22 113 19 53
-354 156 49 93 152
-355 113 39 130 43
-356 16 61 7 10
-357 88 92 138 163
-358 29 42 64 163
-359 47 102 93 153
-360 46 71 39 85
-361 135 28 128 140
-362 2 71 6 74
-363 13 48 93 30
-364 99 111 166 120
-365 187 179 138 107
-366 100 155 80 170
-367 191 182 161 164
-368 111 146 51 98
-369 156 91 151 142
-370 121 144 60 85
-371 78 171 130 153
-372 125 72 141 87
-373 181 192 94 98
-374 23 58 15 50
-375 99 178 36 137
-376 12 47 92 29
-377 11 22 34 17
-378 99 123 126 86
-379 22 13 57 3
-380 110 15 62 8
-381 189 180 140 109
-382 1 113 6 18
-383 132 24 171 129
-384 110 67 166 174
0