[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 384, 534 ] =
BGCG(UG(ATD[192,203]);K1;6).
(I) Following is a form readable by MAGMA:
g:=Graph<384|{ {192, 214}, {164, 228}, {179, 243}, {176, 240}, {180, 245}, {186,
251}, {154, 222}, {178, 246}, {130, 199}, {177, 244}, {141, 200}, {146, 215},
{143, 201}, {167, 224}, {191, 248}, {142, 198}, {188, 244}, {128, 202}, {183,
253}, {179, 248}, {159, 210}, {145, 223}, {174, 224}, {132, 212}, {184, 232},
{160, 240}, {128, 210}, {149, 193}, {153, 205}, {155, 205}, {184, 224}, {130,
219}, {187, 226}, {170, 243}, {159, 198}, {161, 251}, {140, 215}, {179, 232},
{146, 201}, {130, 222}, {190, 226}, {188, 224}, {136, 212}, {136, 213}, {168,
245}, {153, 198}, {162, 253}, {135, 231}, {188, 221}, {159, 252}, {178, 214},
{151, 242}, {187, 222}, {172, 202}, {149, 242}, {185, 222}, {134, 238}, {190,
214}, {186, 210}, {174, 198}, {135, 239}, {157, 247}, {142, 226}, {158, 243},
{181, 216}, {140, 227}, {145, 225}, {156, 233}, {140, 250}, {164, 210}, {147,
228}, {189, 202}, {182, 193}, {170, 221}, {143, 246}, {148, 238}, {143, 244},
{177, 202}, {145, 234}, {164, 216}, {169, 214}, {76, 205}, {105, 232}, {85,
215}, {100, 230}, {103, 229}, {113, 243}, {86, 213}, {111, 236}, {119, 244},
{123, 248}, {71, 195}, {88, 220}, {115, 246}, {72, 206}, {108, 234}, {68, 195},
{121, 254}, {127, 248}, {93, 215}, {95, 212}, {101, 238}, {123, 240}, {71, 203},
{102, 234}, {113, 252}, {74, 196}, {126, 240}, {86, 217}, {95, 205}, {66, 209},
{95, 204}, {108, 255}, {78, 218}, {99, 247}, {125, 233}, {99, 246}, {96, 247},
{117, 226}, {122, 237}, {117, 237}, {88, 193}, {82, 200}, {65, 221}, {97, 253},
{116, 232}, {66, 220}, {89, 199}, {81, 207}, {80, 206}, {119, 233}, {70, 217},
{106, 245}, {87, 247}, {105, 200}, {100, 199}, {91, 255}, {107, 207}, {67, 230},
{120, 221}, {111, 201}, {75, 227}, {78, 230}, {77, 229}, {69, 239}, {65, 234},
{85, 249}, {98, 206}, {105, 197}, {118, 219}, {79, 225}, {83, 227}, {90, 235},
{111, 220}, {124, 200}, {74, 255}, {110, 219}, {81, 231}, {126, 201}, {66, 250},
{93, 229}, {111, 213}, {84, 239}, {108, 208}, {109, 209}, {120, 196}, {114,
207}, {121, 199}, {83, 236}, {96, 223}, {103, 216}, {2, 194}, {33, 225}, {7,
197}, {39, 229}, {22, 212}, {1, 194}, {18, 209}, {40, 237}, {55, 241}, {20,
220}, {49, 249}, {6, 204}, {63, 245}, {55, 252}, {43, 231}, {38, 235}, {60,
241}, {46, 227}, {5, 203}, {16, 223}, {48, 225}, {1, 211}, {40, 250}, {3, 208},
{46, 253}, {24, 204}, {59, 239}, {58, 238}, {6, 211}, {15, 217}, {62, 233}, {11,
211}, {63, 230}, {25, 195}, {61, 231}, {11, 208}, {24, 195}, {35, 255}, {12,
209}, {27, 197}, {33, 254}, {11, 235}, {27, 251}, {25, 249}, {7, 228}, {33,
194}, {17, 242}, {32, 196}, {14, 235}, {61, 216}, {30, 251}, {37, 194}, {20,
252}, {51, 219}, {34, 203}, {51, 218}, {57, 211}, {49, 218}, {39, 203}, {52,
217}, {17, 254}, {29, 237}, {29, 236}, {39, 213}, {54, 196}, {54, 197}, {12,
249}, {9, 241}, {34, 218}, {10, 242}, {21, 236}, {52, 206}, {53, 207}, {6, 250},
{3, 254}, {60, 193}, {26, 228}, {14, 241}, {51, 204}, {47, 208}, {32, 223}, {14,
270}, {26, 282}, {101, 357}, {99, 354}, {104, 361}, {14, 268}, {76, 334}, {50,
304}, {29, 287}, {19, 272}, {63, 316}, {108, 367}, {15, 267}, {32, 292}, {112,
372}, {125, 377}, {42, 303}, {76, 329}, {50, 311}, {12, 267}, {60, 315}, {7,
271}, {115, 379}, {23, 286}, {29, 276}, {100, 365}, {80, 346}, {89, 339}, {36,
303}, {18, 286}, {57, 309}, {52, 312}, {102, 362}, {126, 370}, {39, 298}, {79,
322}, {69, 328}, {67, 334}, {2, 268}, {60, 306}, {93, 338}, {30, 270}, {83,
323}, {56, 296}, {45, 317}, {37, 308}, {1, 275}, {59, 297}, {13, 287}, {2, 272},
{36, 311}, {127, 364}, {41, 317}, {81, 325}, {63, 299}, {43, 319}, {96, 372},
{18, 263}, {76, 345}, {55, 290}, {38, 307}, {37, 304}, {123, 366}, {125, 360},
{25, 271}, {64, 342}, {117, 355}, {7, 272}, {38, 318}, {72, 336}, {92, 324},
{107, 371}, {10, 275}, {53, 300}, {97, 376}, {112, 361}, {119, 366}, {26, 256},
{34, 312}, {100, 382}, {5, 286}, {155, 384}, {77, 342}, {68, 351}, {61, 294},
{42, 305}, {46, 306}, {73, 341}, {104, 373}, {13, 275}, {30, 256}, {4, 292},
{88, 376}, {87, 375}, {37, 261}, {8, 297}, {10, 296}, {28, 318}, {22, 309}, {54,
277}, {31, 316}, {114, 337}, {13, 297}, {87, 371}, {68, 352}, {56, 284}, {18,
310}, {109, 329}, {115, 343}, {1, 292}, {85, 368}, {64, 357}, {12, 298}, {71,
353}, {17, 310}, {70, 353}, {58, 285}, {16, 312}, {168, 384}, {91, 371}, {50,
282}, {89, 368}, {3, 297}, {36, 270}, {26, 305}, {49, 282}, {36, 271}, {27,
304}, {122, 337}, {98, 334}, {17, 316}, {57, 276}, {107, 326}, {78, 352}, {109,
323}, {48, 287}, {80, 383}, {115, 348}, {58, 267}, {122, 328}, {73, 378}, {84,
359}, {28, 296}, {77, 377}, {119, 323}, {59, 270}, {83, 358}, {96, 341}, {97,
340}, {106, 351}, {127, 330}, {28, 298}, {87, 353}, {69, 371}, {61, 267}, {116,
322}, {20, 291}, {91, 364}, {24, 288}, {71, 383}, {8, 305}, {51, 266}, {9, 304},
{103, 350}, {121, 320}, {4, 318}, {23, 301}, {52, 271}, {101, 350}, {65, 380},
{82, 367}, {98, 351}, {107, 342}, {124, 321}, {13, 307}, {59, 261}, {43, 363},
{192, 384}, {67, 259}, {53, 373}, {95, 287}, {45, 364}, {106, 296}, {75, 264},
{84, 272}, {8, 333}, {70, 259}, {124, 313}, {56, 382}, {99, 293}, {41, 366},
{114, 309}, {24, 336}, {74, 258}, {65, 265}, {41, 353}, {40, 352}, {104, 289},
{73, 259}, {103, 301}, {118, 316}, {23, 348}, {25, 341}, {62, 370}, {31, 339},
{31, 338}, {79, 258}, {35, 366}, {8, 326}, {75, 261}, {73, 263}, {50, 380}, {42,
356}, {2, 333}, {9, 326}, {97, 302}, {117, 314}, {28, 332}, {77, 285}, {113,
289}, {43, 377}, {31, 332}, {121, 298}, {124, 303}, {42, 383}, {53, 355}, {68,
274}, {94, 264}, {109, 315}, {48, 359}, {80, 263}, {120, 303}, {11, 339}, {47,
375}, {34, 378}, {20, 333}, {72, 273}, {45, 372}, {93, 263}, {101, 319}, {16,
331}, {44, 375}, {21, 334}, {122, 289}, {54, 362}, {72, 276}, {70, 282}, {62,
354}, {15, 338}, {88, 261}, {81, 268}, {112, 301}, {44, 370}, {64, 286}, {123,
293}, {78, 273}, {102, 313}, {21, 373}, {86, 310}, {22, 374}, {105, 265}, {16,
370}, {41, 331}, {92, 318}, {4, 359}, {91, 312}, {67, 288}, {55, 340}, {48,
339}, {46, 333}, {21, 374}, {5, 358}, {27, 383}, {30, 378}, {94, 315}, {35,
325}, {64, 294}, {58, 348}, {102, 256}, {126, 280}, {66, 293}, {56, 336}, {69,
301}, {98, 266}, {15, 358}, {86, 319}, {75, 290}, {44, 325}, {19, 378}, {85,
319}, {92, 310}, {118, 284}, {125, 279}, {49, 346}, {90, 305}, {47, 322}, {110,
259}, {9, 359}, {90, 308}, {19, 380}, {82, 317}, {118, 281}, {57, 329}, {94,
302}, {113, 257}, {116, 260}, {40, 345}, {4, 374}, {79, 317}, {6, 373}, {47,
347}, {90, 302}, {62, 330}, {116, 256}, {3, 374}, {5, 368}, {22, 352}, {82,
292}, {44, 346}, {35, 341}, {19, 356}, {45, 346}, {33, 345}, {74, 307}, {127,
262}, {10, 368}, {84, 302}, {110, 276}, {32, 347}, {92, 295}, {23, 363}, {106,
278}, {110, 274}, {112, 268}, {120, 260}, {94, 291}, {89, 295}, {38, 345}, {114,
269}, {163, 290}, {139, 265}, {152, 283}, {163, 295}, {150, 275}, {157, 280},
{152, 285}, {144, 281}, {166, 300}, {172, 289}, {147, 285}, {183, 313}, {152,
278}, {164, 299}, {169, 294}, {177, 288}, {182, 295}, {137, 283}, {147, 257},
{179, 288}, {129, 277}, {130, 278}, {167, 306}, {185, 300}, {131, 277}, {158,
264}, {155, 269}, {157, 262}, {151, 265}, {131, 291}, {184, 280}, {173, 269},
{161, 257}, {132, 293}, {155, 314}, {137, 299}, {190, 284}, {166, 258}, {173,
264}, {189, 280}, {162, 260}, {167, 257}, {139, 291}, {167, 269}, {184, 274},
{168, 258}, {149, 313}, {189, 273}, {186, 278}, {181, 281}, {171, 262}, {192,
365}, {169, 262}, {192, 367}, {138, 314}, {154, 299}, {166, 279}, {128, 306},
{182, 260}, {133, 311}, {134, 308}, {136, 315}, {151, 290}, {191, 266}, {153,
300}, {163, 277}, {188, 266}, {173, 283}, {160, 279}, {172, 283}, {165, 274},
{161, 281}, {175, 279}, {156, 294}, {166, 284}, {142, 309}, {170, 273}, {135,
314}, {137, 311}, {138, 308}, {141, 307}, {129, 321}, {176, 369}, {136, 330},
{185, 379}, {175, 365}, {149, 343}, {141, 335}, {129, 322}, {158, 349}, {134,
325}, {150, 338}, {161, 357}, {140, 330}, {187, 381}, {183, 369}, {146, 340},
{159, 344}, {165, 354}, {170, 354}, {154, 336}, {139, 320}, {156, 343}, {135,
331}, {176, 381}, {134, 328}, {131, 332}, {180, 379}, {165, 362}, {144, 351},
{132, 340}, {171, 379}, {151, 327}, {153, 328}, {186, 363}, {181, 356}, {148,
326}, {171, 377}, {163, 369}, {150, 324}, {131, 343}, {172, 376}, {144, 324},
{168, 381}, {150, 320}, {185, 367}, {174, 376}, {133, 349}, {171, 369}, {178,
360}, {146, 329}, {177, 362}, {138, 342}, {145, 335}, {182, 360}, {157, 323},
{154, 324}, {148, 331}, {187, 347}, {156, 381}, {132, 358}, {128, 355}, {139,
360}, {143, 364}, {162, 327}, {180, 337}, {142, 361}, {191, 344}, {160, 327},
{104, 384}, {181, 349}, {137, 357}, {178, 350}, {147, 382}, {133, 363}, {176,
350}, {169, 327}, {162, 332}, {190, 335}, {174, 349}, {175, 347}, {173, 344},
{183, 320}, {141, 375}, {133, 382}, {180, 335}, {152, 356}, {189, 321}, {160,
348}, {129, 380}, {165, 344}, {158, 355}, {144, 365}, {148, 361}, {138, 372},
{191, 321}, {175, 337} }>;
(II) A more general form is to represent the graph as the orbit of {192, 214}
under the group generated by the following permutations:
a: (2, 6)(4, 13)(5, 16)(7, 24)(8, 21)(9, 29)(10, 32)(11, 33)(12, 35)(14, 40)(15,
41)(17, 47)(18, 44)(19, 51)(20, 53)(22, 59)(23, 62)(26, 67)(27, 72)(28, 74)(30,
78)(31, 79)(36, 68)(37, 57)(39, 91)(42, 98)(43, 99)(45, 93)(46, 104)(49, 73)(50,
110)(52, 71)(54, 56)(55, 117)(58, 119)(60, 122)(61, 123)(63, 116)(64, 126)(65,
130)(66, 81)(69, 136)(75, 142)(76, 90)(77, 143)(82, 150)(83, 148)(84, 95)(85,
96)(86, 87)(88, 114)(89, 145)(92, 141)(94, 153)(97, 155)(100, 102)(101,
157)(103, 127)(105, 154)(106, 120)(107, 111)(108, 121)(109, 134)(112, 140)(113,
128)(115, 125)(118, 129)(124, 144)(131, 166)(132, 135)(133, 165)(137, 184)(138,
146)(139, 185)(147, 177)(149, 175)(151, 187)(152, 188)(156, 160)(158, 159)(161,
189)(162, 168)(163, 190)(164, 179)(167, 172)(169, 176)(170, 186)(171, 178)(173,
174)(180, 182)(181, 191)(183, 192)(193, 337)(194, 211)(195, 271)(196, 296)(197,
336)(198, 264)(199, 234)(200, 324)(201, 342)(202, 257)(203, 312)(204, 272)(205,
302)(206, 383)(207, 220)(208, 254)(209, 325)(210, 243)(212, 239)(213, 371)(214,
369)(215, 372)(216, 248)(217, 353)(218, 378)(219, 380)(221, 278)(222, 265)(223,
368)(224, 283)(225, 339)(226, 290)(227, 361)(228, 288)(229, 364)(230, 256)(231,
293)(232, 299)(233, 348)(235, 345)(236, 326)(237, 241)(238, 323)(240, 294)(242,
347)(244, 285)(245, 260)(246, 377)(247, 319)(249, 341)(250, 268)(251, 273)(252,
355)(253, 384)(255, 298)(258, 332)(259, 282)(261, 309)(262, 350)(263, 346)(266,
356)(267, 366)(269, 376)(270, 352)(274, 311)(275, 292)(276, 304)(277, 284)(279,
343)(280, 357)(281, 321)(286, 370)(287, 359)(289, 306)(291, 300)(295, 335)(297,
374)(301, 330)(303, 351)(305, 334)(307, 318)(308, 329)(310, 375)(313, 365)(314,
340)(315, 328)(316, 322)(317, 338)(320, 367)(327, 381)(331, 358)(333, 373)(344,
349)(354, 363)(360, 379)(362, 382) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 150)(4, 11)(5, 50)(6, 82)(7, 93)(8, 121)(9, 89)(10, 37)(12, 42)(13,
33)(14, 92)(15, 19)(16, 110)(17, 59)(18, 36)(20, 183)(21, 108)(22, 47)(23,
137)(24, 45)(25, 80)(26, 39)(27, 85)(28, 90)(29, 145)(30, 86)(31, 84)(32,
57)(34, 70)(35, 98)(40, 141)(41, 51)(43, 161)(44, 68)(46, 139)(49, 71)(52,
73)(53, 192)(54, 146)(55, 163)(56, 138)(58, 152)(60, 182)(61, 181)(62, 184)(63,
69)(64, 133)(65, 83)(66, 124)(67, 91)(72, 96)(74, 76)(75, 151)(77, 147)(78,
87)(79, 95)(81, 144)(88, 149)(94, 162)(97, 131)(99, 189)(100, 107)(101,
186)(102, 111)(103, 164)(104, 185)(105, 140)(106, 134)(109, 120)(112, 154)(113,
171)(114, 175)(115, 172)(116, 136)(117, 190)(118, 135)(119, 188)(122, 180)(123,
191)(125, 167)(126, 165)(127, 179)(128, 178)(129, 132)(130, 148)(142, 187)(143,
177)(153, 168)(155, 166)(156, 174)(157, 170)(158, 169)(159, 176)(160, 173)(194,
275)(195, 346)(196, 329)(197, 215)(198, 381)(199, 326)(200, 250)(201, 362)(202,
246)(203, 282)(204, 317)(205, 258)(206, 341)(207, 365)(208, 374)(209, 303)(210,
350)(211, 292)(212, 322)(213, 256)(214, 355)(217, 378)(218, 353)(219, 331)(220,
313)(221, 323)(222, 361)(223, 276)(224, 233)(225, 287)(227, 265)(228, 229)(230,
371)(231, 281)(232, 330)(234, 236)(235, 318)(237, 335)(238, 278)(239, 316)(240,
344)(241, 295)(242, 261)(243, 262)(245, 328)(247, 273)(249, 383)(251, 319)(252,
369)(253, 291)(254, 297)(255, 334)(257, 377)(259, 312)(260, 315)(263, 271)(264,
327)(266, 366)(267, 356)(268, 324)(269, 279)(270, 310)(272, 338)(274, 370)(277,
340)(280, 354)(283, 348)(284, 314)(286, 311)(288, 364)(289, 379)(293, 321)(294,
349)(296, 308)(298, 305)(299, 301)(300, 384)(302, 332)(304, 368)(306, 360)(307,
345)(309, 347)(320, 333)(325, 351)(336, 372)(339, 359)(342, 382)(343, 376)(352,
375)(357, 363)(358, 380)(367, 373)
c: (1, 2)(3, 9)(4, 8)(5, 34)(6, 112)(7, 150)(10, 19)(11, 14)(12, 80)(13, 84)(15,
52)(16, 83)(17, 50)(18, 49)(20, 82)(21, 148)(22, 107)(23, 51)(24, 103)(25,
93)(26, 92)(27, 121)(28, 42)(29, 135)(30, 89)(31, 36)(32, 46)(33, 37)(35,
146)(38, 90)(39, 71)(40, 138)(41, 111)(43, 110)(44, 109)(45, 66)(47, 60)(48,
59)(53, 142)(54, 183)(55, 108)(56, 181)(57, 81)(58, 98)(61, 72)(62, 157)(63,
137)(64, 78)(65, 151)(67, 101)(68, 77)(69, 95)(70, 86)(73, 85)(74, 97)(75,
145)(76, 134)(79, 88)(87, 136)(91, 132)(94, 141)(96, 140)(99, 127)(100,
161)(102, 163)(105, 139)(106, 152)(113, 192)(115, 191)(116, 182)(118, 133)(119,
126)(120, 162)(122, 155)(123, 143)(124, 131)(125, 184)(128, 187)(129, 149)(130,
186)(144, 147)(154, 164)(156, 189)(158, 190)(159, 185)(160, 188)(165, 171)(166,
174)(167, 175)(168, 172)(169, 170)(173, 180)(176, 177)(178, 179)(193, 322)(195,
229)(196, 253)(197, 320)(198, 300)(199, 251)(200, 291)(201, 366)(202, 381)(204,
301)(205, 328)(206, 267)(207, 309)(208, 241)(209, 346)(210, 222)(211, 268)(212,
371)(213, 353)(214, 243)(215, 341)(216, 336)(218, 286)(219, 363)(220, 317)(221,
327)(223, 227)(224, 279)(225, 261)(226, 355)(228, 324)(230, 357)(231, 276)(232,
360)(233, 280)(234, 290)(236, 331)(237, 314)(238, 334)(239, 287)(240, 244)(242,
380)(245, 283)(246, 248)(247, 330)(249, 263)(250, 372)(252, 367)(254, 304)(255,
340)(256, 295)(257, 365)(258, 376)(259, 319)(262, 354)(264, 335)(266, 348)(269,
337)(270, 339)(271, 338)(272, 275)(273, 294)(274, 377)(277, 313)(281, 382)(282,
310)(284, 349)(285, 351)(288, 350)(289, 384)(292, 333)(293, 364)(296, 356)(297,
359)(298, 383)(302, 307)(303, 332)(305, 318)(306, 347)(308, 345)(311, 316)(312,
358)(315, 375)(321, 343)(323, 370)(325, 329)(326, 374)(342, 352)(344, 379)(361,
373)(362, 369)(368, 378)
C4[ 384, 534 ]
384
-1 275 211 292 194
-2 333 268 194 272
-3 297 374 254 208
-4 374 292 359 318
-5 286 203 368 358
-6 211 204 250 373
-7 271 228 272 197
-8 297 333 326 305
-9 304 326 359 241
-10 242 275 368 296
-11 211 235 339 208
-12 209 298 267 249
-13 275 297 287 307
-14 235 268 270 241
-15 267 358 217 338
-16 331 223 312 370
-17 242 254 310 316
-18 209 286 310 263
-19 356 378 380 272
-20 220 333 291 252
-21 374 334 236 373
-22 352 374 309 212
-23 286 363 301 348
-24 288 204 336 195
-25 341 249 271 195
-26 256 282 228 305
-27 304 251 383 197
-28 298 332 296 318
-29 276 287 236 237
-30 256 378 270 251
-31 332 316 338 339
-32 223 292 347 196
-33 254 345 225 194
-34 312 378 203 218
-35 341 255 366 325
-36 311 270 303 271
-37 308 194 304 261
-38 235 345 307 318
-39 298 213 203 229
-40 352 345 237 250
-41 331 353 366 317
-42 356 303 305 383
-43 231 319 363 377
-44 375 346 325 370
-45 364 346 317 372
-46 253 333 227 306
-47 375 322 347 208
-48 287 225 359 339
-49 346 249 282 218
-50 311 380 282 304
-51 266 204 218 219
-52 312 271 206 217
-53 300 355 207 373
-54 277 196 197 362
-55 290 241 252 340
-56 336 382 284 296
-57 276 309 211 329
-58 267 238 348 285
-59 297 270 239 261
-60 193 315 306 241
-61 231 267 216 294
-62 330 233 354 370
-63 299 245 316 230
-64 286 342 357 294
-65 221 265 234 380
-66 209 220 293 250
-67 288 334 259 230
-68 352 195 274 351
-69 301 239 371 328
-70 353 259 282 217
-71 353 203 195 383
-72 276 336 206 273
-73 341 378 259 263
-74 255 258 196 307
-75 264 290 227 261
-76 334 345 205 329
-77 342 377 229 285
-78 352 218 273 230
-79 322 225 258 317
-80 346 206 383 263
-81 231 268 325 207
-82 200 367 292 317
-83 323 236 358 227
-84 302 359 239 272
-85 319 368 215 249
-86 319 310 213 217
-87 353 375 247 371
-88 220 376 193 261
-89 199 368 295 339
-90 308 235 302 305
-91 364 255 312 371
-92 310 324 295 318
-93 215 338 229 263
-94 264 291 302 315
-95 287 212 204 205
-96 341 223 247 372
-97 253 376 302 340
-98 266 334 206 351
-99 354 246 247 293
-100 199 365 382 230
-101 319 357 238 350
-102 234 256 313 362
-103 301 216 229 350
-104 289 361 373 384
-105 232 265 200 197
-106 245 278 296 351
-107 342 326 371 207
-108 255 234 367 208
-109 209 323 315 329
-110 276 259 219 274
-111 220 201 213 236
-112 268 301 361 372
-113 243 289 257 252
-114 309 269 337 207
-115 343 246 379 348
-116 232 256 322 260
-117 355 226 237 314
-118 281 316 284 219
-119 233 244 366 323
-120 221 303 260 196
-121 298 199 320 254
-122 289 237 337 328
-123 366 248 293 240
-124 200 321 313 303
-125 233 377 279 360
-126 201 280 370 240
-127 330 364 248 262
-128 210 355 202 306
-129 277 321 322 380
-130 199 222 278 219
-131 277 332 343 291
-132 212 358 293 340
-133 363 311 349 382
-134 308 325 238 328
-135 231 331 314 239
-136 330 212 213 315
-137 299 311 357 283
-138 308 342 314 372
-139 265 320 291 360
-140 330 215 227 250
-141 375 200 335 307
-142 198 309 226 361
-143 364 244 201 246
-144 365 324 281 351
-145 223 234 225 335
-146 201 215 329 340
-147 257 228 382 285
-148 331 238 326 361
-149 242 343 313 193
-150 275 320 324 338
-151 242 265 290 327
-152 278 356 283 285
-153 198 300 205 328
-154 222 299 324 336
-155 269 314 205 384
-156 233 343 381 294
-157 323 247 280 262
-158 264 243 355 349
-159 198 210 344 252
-160 279 348 327 240
-161 257 357 281 251
-162 253 332 260 327
-163 277 290 369 295
-164 210 299 216 228
-165 354 344 274 362
-166 300 279 258 284
-167 224 257 269 306
-168 245 258 381 384
-169 214 294 327 262
-170 221 243 354 273
-171 377 379 369 262
-172 376 289 202 283
-173 264 344 269 283
-174 198 376 224 349
-175 365 279 347 337
-176 369 381 240 350
-177 244 288 202 362
-178 246 214 360 350
-179 232 243 288 248
-180 245 335 379 337
-181 356 281 216 349
-182 193 260 360 295
-183 253 320 313 369
-184 232 224 280 274
-185 222 300 367 379
-186 363 210 278 251
-187 222 226 347 381
-188 221 244 266 224
-189 321 202 280 273
-190 214 335 226 284
-191 266 321 344 248
-192 365 367 214 384
-193 88 60 149 182
-194 33 1 2 37
-195 24 68 25 71
-196 74 32 54 120
-197 27 105 7 54
-198 159 174 142 153
-199 121 89 100 130
-200 124 82 105 141
-201 143 111 146 126
-202 177 189 128 172
-203 34 5 71 39
-204 24 6 51 95
-205 155 95 76 153
-206 80 72 52 98
-207 81 114 107 53
-208 11 3 47 108
-209 66 12 18 109
-210 159 128 164 186
-211 11 1 57 6
-212 22 132 136 95
-213 111 136 39 86
-214 178 190 169 192
-215 146 93 85 140
-216 103 181 61 164
-217 15 70 52 86
-218 34 78 49 51
-219 110 51 118 130
-220 66 88 111 20
-221 188 170 65 120
-222 154 187 130 185
-223 145 16 96 32
-224 188 167 184 174
-225 33 79 145 48
-226 187 190 117 142
-227 46 83 140 75
-228 26 147 7 164
-229 77 103 93 39
-230 67 78 100 63
-231 135 81 61 43
-232 179 105 116 184
-233 156 125 62 119
-234 145 102 108 65
-235 11 90 14 38
-236 111 83 29 21
-237 122 29 40 117
-238 101 134 58 148
-239 69 135 59 84
-240 176 123 126 160
-241 55 14 60 9
-242 17 149 151 10
-243 113 179 158 170
-244 143 177 188 119
-245 168 180 106 63
-246 99 143 178 115
-247 99 157 96 87
-248 123 179 191 127
-249 12 25 49 85
-250 66 6 40 140
-251 27 161 30 186
-252 55 113 159 20
-253 46 183 162 97
-254 33 121 3 17
-255 35 91 74 108
-256 102 26 116 30
-257 167 113 147 161
-258 166 79 168 74
-259 110 67 70 73
-260 116 182 162 120
-261 88 37 59 75
-262 157 169 127 171
-263 80 93 18 73
-264 158 94 173 75
-265 105 139 151 65
-266 188 191 51 98
-267 12 58 15 61
-268 2 112 14 81
-269 155 167 114 173
-270 14 36 59 30
-271 25 36 7 52
-272 2 7 84 19
-273 78 189 170 72
-274 110 165 68 184
-275 1 13 150 10
-276 110 57 72 29
-277 129 163 54 131
-278 106 130 152 186
-279 166 125 160 175
-280 189 157 126 184
-281 144 181 161 118
-282 26 70 49 50
-283 137 172 173 152
-284 56 166 190 118
-285 77 58 147 152
-286 23 5 18 64
-287 13 48 29 95
-288 67 177 24 179
-289 122 113 104 172
-290 55 151 75 163
-291 94 139 20 131
-292 1 4 82 32
-293 66 99 132 123
-294 156 169 61 64
-295 89 92 182 163
-296 56 28 106 10
-297 13 3 59 8
-298 121 12 28 39
-299 154 137 63 164
-300 166 53 185 153
-301 23 112 69 103
-302 90 94 84 97
-303 36 124 42 120
-304 37 27 50 9
-305 90 26 8 42
-306 46 167 60 128
-307 13 38 74 141
-308 90 134 37 138
-309 22 57 114 142
-310 92 17 18 86
-311 133 36 137 50
-312 34 91 16 52
-313 102 124 149 183
-314 155 135 138 117
-315 136 60 94 109
-316 17 63 118 31
-317 45 79 82 41
-318 4 92 38 28
-319 101 85 86 43
-320 121 139 150 183
-321 189 124 191 129
-322 79 47 116 129
-323 157 83 119 109
-324 154 144 92 150
-325 44 35 134 81
-326 148 8 107 9
-327 169 160 151 162
-328 122 134 69 153
-329 57 146 76 109
-330 136 127 62 140
-331 135 16 148 41
-332 28 162 31 131
-333 2 46 8 20
-334 67 21 76 98
-335 145 190 180 141
-336 154 56 24 72
-337 122 114 180 175
-338 15 93 150 31
-339 11 89 48 31
-340 55 132 146 97
-341 35 25 73 96
-342 77 138 107 64
-343 156 115 149 131
-344 165 191 159 173
-345 33 38 40 76
-346 44 45 80 49
-347 187 47 32 175
-348 23 58 115 160
-349 133 158 181 174
-350 176 101 178 103
-351 144 68 106 98
-352 22 78 68 40
-353 70 71 41 87
-354 99 165 170 62
-355 158 117 128 53
-356 181 19 42 152
-357 101 137 161 64
-358 132 15 5 83
-359 4 48 84 9
-360 178 125 182 139
-361 112 104 148 142
-362 165 177 102 54
-363 23 133 43 186
-364 143 45 91 127
-365 100 144 192 175
-366 35 123 41 119
-367 82 192 108 185
-368 89 5 85 10
-369 176 171 183 163
-370 44 16 126 62
-371 69 91 107 87
-372 45 112 138 96
-373 104 6 53 21
-374 22 3 4 21
-375 44 47 141 87
-376 88 172 97 174
-377 77 125 171 43
-378 34 73 19 30
-379 180 115 171 185
-380 50 19 129 65
-381 176 187 156 168
-382 56 100 133 147
-383 80 27 71 42
-384 155 168 104 192
0