C4graphGraph forms for C4 [ 384, 535 ] = BGCG(UG(ATD[192,205]);K1;5)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 535 ] = BGCG(UG(ATD[192,205]);K1;5).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {192, 218}, {192, 227}, {192, 232}, {144, 209}, {154, 219}, {149, 212}, {166, 228}, {177, 242}, {183, 244}, {153, 221}, {172, 232}, {141, 200}, {168, 237}, {149, 208}, {176, 246}, {178, 244}, {165, 226}, {153, 209}, {151, 222}, {187, 242}, {133, 207}, {188, 246}, {144, 219}, {168, 227}, {158, 210}, {165, 235}, {174, 225}, {138, 218}, {147, 195}, {146, 195}, {162, 246}, {133, 208}, {181, 224}, {173, 248}, {184, 238}, {182, 225}, {132, 220}, {148, 204}, {146, 202}, {189, 231}, {137, 210}, {176, 235}, {177, 237}, {180, 232}, {167, 249}, {181, 235}, {179, 237}, {176, 238}, {131, 220}, {133, 218}, {147, 204}, {157, 253}, {132, 229}, {176, 209}, {134, 228}, {135, 228}, {161, 197}, {169, 205}, {130, 231}, {160, 197}, {129, 230}, {129, 233}, {185, 209}, {162, 202}, {136, 224}, {150, 255}, {187, 210}, {161, 200}, {138, 225}, {161, 202}, {146, 249}, {156, 243}, {188, 205}, {152, 235}, {151, 227}, {130, 247}, {171, 222}, {147, 229}, {162, 212}, {145, 230}, {140, 244}, {142, 244}, {166, 221}, {143, 243}, {191, 195}, {133, 251}, {172, 211}, {116, 245}, {122, 249}, {118, 242}, {119, 243}, {122, 254}, {82, 215}, {75, 194}, {121, 240}, {72, 194}, {64, 203}, {95, 212}, {68, 200}, {104, 228}, {113, 252}, {75, 197}, {73, 198}, {87, 216}, {97, 238}, {85, 196}, {107, 250}, {81, 196}, {89, 204}, {94, 203}, {104, 255}, {107, 252}, {127, 232}, {78, 214}, {126, 231}, {100, 254}, {106, 241}, {67, 223}, {93, 193}, {96, 252}, {127, 226}, {83, 204}, {92, 195}, {111, 240}, {126, 225}, {110, 207}, {89, 251}, {105, 203}, {90, 254}, {112, 212}, {114, 214}, {123, 222}, {83, 245}, {105, 207}, {71, 224}, {109, 202}, {116, 211}, {81, 248}, {96, 201}, {86, 253}, {68, 233}, {96, 205}, {108, 194}, {123, 213}, {66, 242}, {90, 234}, {119, 198}, {69, 247}, {73, 250}, {85, 230}, {121, 205}, {101, 208}, {71, 241}, {76, 250}, {124, 197}, {66, 248}, {67, 249}, {102, 220}, {111, 213}, {74, 241}, {103, 220}, {114, 201}, {116, 207}, {91, 230}, {84, 234}, {109, 210}, {7, 199}, {22, 214}, {4, 199}, {27, 223}, {31, 219}, {29, 217}, {32, 229}, {9, 206}, {40, 239}, {9, 193}, {51, 251}, {38, 239}, {42, 224}, {2, 201}, {30, 213}, {47, 227}, {59, 246}, {62, 240}, {60, 243}, {15, 223}, {62, 238}, {30, 206}, {22, 198}, {8, 217}, {25, 203}, {63, 237}, {11, 216}, {18, 196}, {42, 252}, {35, 245}, {12, 219}, {11, 211}, {58, 226}, {38, 254}, {4, 221}, {60, 229}, {12, 214}, {39, 253}, {33, 251}, {27, 193}, {24, 194}, {14, 213}, {41, 245}, {28, 193}, {23, 201}, {25, 199}, {47, 240}, {53, 215}, {25, 250}, {18, 247}, {56, 221}, {10, 236}, {54, 208}, {23, 241}, {41, 206}, {22, 255}, {55, 222}, {30, 247}, {7, 236}, {47, 196}, {63, 211}, {2, 236}, {19, 253}, {5, 234}, {38, 215}, {40, 217}, {31, 236}, {29, 233}, {44, 216}, {43, 223}, {34, 215}, {14, 248}, {44, 218}, {46, 217}, {7, 255}, {32, 216}, {17, 233}, {27, 226}, {21, 239}, {52, 206}, {17, 234}, {60, 199}, {18, 239}, {56, 198}, {24, 231}, {55, 200}, {8, 264}, {88, 344}, {64, 320}, {35, 291}, {24, 280}, {122, 378}, {71, 326}, {78, 335}, {102, 359}, {51, 305}, {69, 327}, {65, 323}, {120, 378}, {12, 271}, {79, 332}, {46, 301}, {111, 364}, {39, 291}, {89, 349}, {75, 335}, {62, 314}, {125, 377}, {21, 272}, {106, 367}, {115, 374}, {9, 271}, {70, 320}, {61, 315}, {14, 264}, {16, 279}, {84, 339}, {68, 323}, {118, 369}, {2, 266}, {65, 329}, {36, 300}, {110, 358}, {76, 325}, {80, 345}, {1, 267}, {94, 340}, {111, 357}, {3, 264}, {80, 347}, {28, 279}, {6, 269}, {4, 271}, {20, 281}, {15, 257}, {82, 348}, {95, 337}, {108, 354}, {65, 334}, {77, 322}, {72, 327}, {106, 357}, {120, 375}, {42, 314}, {112, 352}, {91, 329}, {112, 354}, {114, 352}, {110, 381}, {17, 261}, {85, 321}, {61, 297}, {94, 330}, {108, 376}, {34, 311}, {51, 294}, {92, 330}, {64, 343}, {100, 371}, {6, 286}, {152, 384}, {48, 296}, {6, 287}, {11, 273}, {55, 301}, {126, 356}, {59, 288}, {107, 368}, {8, 276}, {82, 334}, {79, 339}, {57, 293}, {11, 279}, {124, 352}, {50, 303}, {117, 360}, {1, 287}, {56, 294}, {52, 298}, {127, 353}, {52, 299}, {20, 308}, {38, 262}, {33, 257}, {102, 326}, {48, 273}, {54, 279}, {113, 336}, {35, 257}, {47, 269}, {99, 321}, {103, 325}, {18, 305}, {7, 291}, {65, 357}, {113, 341}, {46, 267}, {86, 371}, {59, 286}, {109, 331}, {115, 341}, {78, 361}, {86, 369}, {99, 324}, {5, 301}, {96, 328}, {16, 313}, {61, 276}, {97, 328}, {127, 342}, {34, 264}, {90, 368}, {53, 287}, {49, 283}, {93, 375}, {45, 257}, {91, 375}, {28, 305}, {49, 284}, {33, 271}, {114, 348}, {3, 300}, {100, 331}, {10, 314}, {5, 308}, {88, 361}, {83, 354}, {113, 320}, {3, 305}, {103, 341}, {84, 359}, {36, 272}, {180, 384}, {67, 374}, {120, 333}, {37, 275}, {50, 260}, {26, 301}, {13, 308}, {77, 372}, {31, 294}, {125, 324}, {48, 266}, {85, 367}, {123, 321}, {81, 362}, {70, 379}, {103, 346}, {10, 308}, {83, 365}, {21, 299}, {93, 355}, {28, 291}, {43, 276}, {115, 332}, {121, 326}, {55, 375}, {58, 378}, {13, 332}, {88, 281}, {92, 285}, {106, 299}, {120, 313}, {15, 333}, {41, 363}, {13, 334}, {6, 322}, {91, 287}, {95, 282}, {32, 358}, {72, 270}, {56, 382}, {64, 263}, {74, 269}, {101, 290}, {53, 381}, {89, 273}, {29, 340}, {79, 262}, {77, 260}, {68, 269}, {76, 262}, {19, 344}, {37, 366}, {33, 362}, {26, 337}, {15, 323}, {21, 345}, {124, 304}, {1, 332}, {30, 339}, {23, 346}, {117, 312}, {123, 310}, {126, 307}, {36, 362}, {45, 355}, {44, 354}, {108, 290}, {118, 312}, {25, 342}, {58, 373}, {40, 359}, {76, 284}, {116, 293}, {9, 347}, {88, 266}, {87, 261}, {117, 295}, {23, 324}, {63, 364}, {109, 318}, {119, 292}, {122, 297}, {73, 285}, {98, 311}, {101, 304}, {102, 307}, {49, 359}, {14, 345}, {82, 261}, {43, 380}, {98, 309}, {26, 322}, {72, 272}, {45, 373}, {43, 371}, {107, 307}, {112, 296}, {13, 340}, {45, 372}, {39, 382}, {27, 322}, {92, 261}, {98, 315}, {115, 298}, {124, 293}, {66, 280}, {86, 268}, {75, 273}, {12, 343}, {79, 276}, {70, 285}, {54, 365}, {37, 382}, {105, 306}, {4, 344}, {53, 361}, {52, 360}, {95, 258}, {40, 374}, {71, 281}, {61, 355}, {94, 318}, {100, 260}, {63, 350}, {48, 338}, {69, 295}, {57, 347}, {105, 267}, {84, 311}, {31, 379}, {62, 346}, {57, 349}, {104, 268}, {58, 351}, {87, 306}, {74, 300}, {98, 260}, {118, 272}, {19, 379}, {59, 338}, {80, 313}, {20, 382}, {66, 296}, {37, 335}, {121, 275}, {3, 360}, {42, 321}, {2, 366}, {51, 351}, {50, 351}, {69, 296}, {1, 366}, {101, 266}, {24, 360}, {90, 298}, {39, 343}, {99, 275}, {104, 280}, {119, 263}, {49, 320}, {50, 323}, {125, 268}, {10, 376}, {46, 348}, {93, 303}, {57, 330}, {87, 292}, {110, 285}, {20, 352}, {78, 314}, {77, 313}, {32, 340}, {29, 361}, {41, 351}, {80, 294}, {73, 319}, {67, 309}, {117, 259}, {34, 341}, {44, 347}, {36, 339}, {5, 381}, {19, 363}, {8, 368}, {97, 281}, {16, 362}, {35, 345}, {16, 363}, {81, 298}, {54, 330}, {74, 310}, {22, 363}, {97, 284}, {125, 256}, {17, 366}, {26, 357}, {99, 284}, {189, 316}, {164, 288}, {187, 317}, {166, 289}, {186, 317}, {144, 280}, {187, 307}, {183, 319}, {164, 302}, {152, 277}, {175, 290}, {141, 258}, {158, 270}, {172, 316}, {189, 302}, {143, 283}, {186, 302}, {179, 295}, {150, 259}, {164, 306}, {139, 275}, {183, 303}, {170, 306}, {163, 315}, {147, 267}, {154, 259}, {156, 262}, {163, 318}, {188, 289}, {186, 295}, {173, 304}, {136, 278}, {159, 256}, {164, 315}, {128, 288}, {178, 274}, {159, 319}, {186, 283}, {128, 290}, {165, 263}, {158, 316}, {150, 309}, {173, 270}, {155, 312}, {180, 274}, {131, 292}, {136, 289}, {137, 288}, {148, 318}, {163, 265}, {169, 258}, {190, 277}, {185, 274}, {153, 309}, {149, 312}, {182, 283}, {167, 265}, {173, 259}, {185, 278}, {140, 316}, {170, 282}, {148, 292}, {134, 311}, {130, 304}, {142, 317}, {157, 297}, {184, 268}, {171, 286}, {178, 263}, {160, 278}, {152, 303}, {177, 265}, {182, 270}, {144, 297}, {175, 278}, {140, 310}, {184, 258}, {160, 282}, {132, 319}, {174, 277}, {169, 274}, {154, 289}, {60, 384}, {188, 256}, {151, 299}, {138, 310}, {146, 302}, {145, 300}, {168, 277}, {167, 282}, {155, 293}, {190, 256}, {160, 286}, {182, 265}, {180, 372}, {191, 383}, {159, 350}, {174, 367}, {167, 358}, {172, 367}, {191, 380}, {168, 365}, {70, 384}, {181, 370}, {155, 338}, {135, 331}, {181, 377}, {156, 336}, {170, 356}, {129, 337}, {175, 383}, {128, 337}, {132, 343}, {139, 344}, {142, 349}, {138, 350}, {131, 342}, {143, 346}, {183, 353}, {139, 348}, {179, 356}, {161, 377}, {145, 328}, {184, 353}, {149, 335}, {157, 327}, {156, 326}, {158, 325}, {191, 356}, {169, 370}, {163, 383}, {171, 373}, {141, 338}, {151, 328}, {140, 365}, {177, 336}, {170, 331}, {166, 327}, {142, 364}, {155, 376}, {135, 355}, {150, 370}, {171, 334}, {175, 329}, {153, 369}, {190, 342}, {136, 353}, {154, 371}, {148, 381}, {159, 372}, {162, 329}, {189, 336}, {137, 358}, {157, 370}, {135, 374}, {141, 383}, {130, 369}, {190, 333}, {174, 349}, {139, 376}, {129, 373}, {137, 380}, {179, 325}, {131, 379}, {128, 377}, {134, 380}, {165, 350}, {134, 378}, {145, 364}, {192, 317}, {185, 324}, {143, 368}, {178, 333} }>;

(II) A more general form is to represent the graph as the orbit of {192, 218} under the group generated by the following permutations:

a: (1, 2)(3, 33)(4, 34)(5, 20)(6, 101)(7, 115)(8, 12)(9, 14)(10, 13)(11, 85)(15, 117)(16, 18)(17, 37)(19, 38)(21, 41)(22, 40)(23, 105)(24, 45)(25, 103)(26, 124)(27, 173)(28, 81)(29, 78)(30, 80)(31, 79)(32, 42)(35, 52)(36, 51)(39, 90)(43, 154)(44, 123)(46, 114)(47, 54)(48, 91)(49, 119)(50, 118)(53, 88)(55, 112)(56, 84)(57, 111)(58, 72)(59, 175)(60, 113)(61, 144)(62, 94)(63, 174)(64, 143)(65, 155)(66, 93)(67, 150)(68, 149)(69, 120)(70, 156)(71, 110)(73, 102)(74, 133)(75, 129)(76, 131)(77, 130)(82, 139)(83, 151)(86, 100)(87, 99)(89, 145)(92, 121)(95, 161)(96, 147)(97, 148)(98, 153)(104, 135)(106, 116)(107, 132)(108, 171)(109, 184)(122, 157)(125, 170)(126, 159)(127, 158)(128, 160)(134, 166)(136, 137)(140, 192)(141, 162)(146, 169)(152, 177)(163, 176)(164, 185)(165, 182)(167, 181)(178, 186)(179, 190)(180, 189)(183, 187)(188, 191)(193, 248)(194, 373)(195, 205)(196, 279)(197, 337)(198, 359)(199, 341)(200, 212)(201, 267)(202, 258)(203, 346)(204, 328)(206, 345)(207, 241)(208, 269)(209, 315)(210, 353)(211, 367)(213, 347)(214, 217)(215, 344)(216, 321)(218, 310)(219, 276)(220, 250)(221, 311)(222, 354)(223, 259)(224, 358)(225, 350)(226, 270)(227, 365)(229, 252)(230, 273)(231, 372)(232, 316)(233, 335)(234, 382)(235, 265)(236, 332)(237, 277)(238, 318)(239, 363)(240, 330)(242, 303)(243, 320)(244, 317)(245, 299)(246, 383)(247, 313)(249, 370)(251, 300)(253, 254)(255, 374)(256, 356)(257, 360)(260, 369)(261, 275)(262, 379)(263, 283)(264, 271)(266, 287)(268, 331)(272, 351)(274, 302)(278, 288)(280, 355)(281, 381)(282, 377)(284, 292)(285, 326)(286, 290)(289, 380)(291, 298)(293, 357)(294, 339)(295, 333)(296, 375)(301, 352)(304, 322)(305, 362)(306, 324)(307, 319)(312, 323)(314, 340)(325, 342)(327, 378)(329, 338)(334, 376)(336, 384)(343, 368)(349, 364)
b: (2, 37)(3, 18)(4, 12)(6, 91)(7, 39)(8, 40)(10, 20)(11, 54)(14, 21)(15, 45)(19, 22)(23, 99)(24, 130)(25, 132)(26, 55)(27, 93)(30, 52)(31, 56)(32, 94)(34, 38)(36, 81)(42, 71)(43, 135)(44, 57)(47, 145)(48, 149)(49, 143)(50, 58)(59, 162)(60, 64)(61, 67)(62, 97)(63, 168)(65, 171)(66, 118)(68, 129)(69, 117)(70, 119)(72, 173)(73, 131)(74, 85)(75, 101)(76, 103)(77, 120)(78, 88)(79, 115)(83, 116)(84, 90)(86, 104)(87, 92)(89, 133)(95, 141)(96, 121)(98, 122)(100, 134)(102, 107)(105, 147)(106, 123)(108, 124)(109, 137)(110, 148)(111, 151)(112, 155)(113, 156)(114, 139)(127, 183)(128, 161)(138, 174)(140, 172)(142, 192)(144, 153)(146, 164)(150, 157)(152, 165)(154, 166)(159, 190)(160, 175)(163, 167)(170, 191)(178, 180)(194, 304)(195, 306)(196, 300)(197, 290)(198, 379)(199, 343)(200, 337)(201, 275)(202, 288)(203, 229)(204, 207)(208, 273)(211, 365)(212, 338)(213, 299)(214, 344)(216, 330)(218, 349)(219, 221)(220, 250)(222, 357)(223, 355)(226, 303)(227, 364)(228, 371)(230, 269)(232, 244)(236, 382)(239, 264)(240, 328)(241, 321)(243, 320)(247, 360)(248, 272)(249, 315)(252, 326)(253, 255)(254, 311)(259, 327)(260, 378)(262, 341)(263, 384)(266, 335)(276, 374)(277, 350)(280, 369)(281, 314)(282, 383)(284, 346)(285, 292)(286, 329)(293, 354)(296, 312)(297, 309)(298, 339)(310, 367)(318, 358)(319, 342)(322, 375)(323, 373)(331, 380)(333, 372)(352, 376)(359, 368)
c: (2, 6)(3, 11)(4, 15)(7, 27)(8, 32)(9, 35)(10, 26)(12, 45)(13, 46)(14, 44)(16, 51)(17, 53)(18, 54)(19, 50)(20, 55)(21, 57)(22, 58)(23, 59)(24, 63)(25, 67)(30, 83)(31, 77)(34, 87)(36, 89)(37, 91)(38, 92)(39, 93)(40, 94)(42, 95)(43, 60)(47, 101)(48, 74)(49, 109)(52, 116)(56, 120)(61, 132)(62, 128)(64, 135)(65, 139)(66, 138)(68, 88)(69, 140)(70, 100)(71, 141)(72, 142)(73, 122)(75, 145)(76, 146)(78, 129)(79, 147)(81, 133)(84, 148)(85, 149)(86, 152)(90, 110)(96, 160)(97, 161)(98, 131)(99, 162)(102, 163)(103, 164)(104, 165)(105, 115)(106, 155)(107, 167)(108, 111)(112, 123)(113, 170)(114, 171)(117, 172)(118, 174)(119, 134)(121, 175)(124, 151)(125, 176)(126, 177)(127, 150)(130, 168)(136, 169)(137, 143)(144, 159)(153, 190)(154, 180)(156, 191)(157, 183)(158, 186)(166, 178)(173, 192)(179, 189)(181, 184)(182, 187)(185, 188)(193, 291)(194, 364)(195, 262)(196, 208)(197, 328)(198, 378)(199, 223)(200, 281)(201, 286)(202, 284)(203, 374)(204, 339)(205, 278)(206, 245)(207, 298)(209, 256)(210, 283)(211, 360)(212, 321)(213, 354)(214, 373)(215, 261)(216, 264)(217, 340)(218, 248)(219, 372)(220, 315)(221, 333)(222, 352)(224, 258)(225, 242)(226, 255)(227, 304)(228, 263)(229, 276)(230, 335)(231, 237)(232, 259)(233, 361)(234, 381)(235, 268)(236, 322)(238, 377)(239, 330)(240, 290)(241, 338)(243, 380)(244, 327)(246, 324)(247, 365)(249, 250)(251, 362)(252, 282)(253, 303)(254, 285)(257, 271)(260, 379)(265, 307)(266, 269)(267, 332)(270, 317)(272, 349)(273, 300)(274, 289)(275, 329)(277, 369)(279, 305)(280, 350)(287, 366)(288, 346)(292, 311)(293, 299)(294, 313)(295, 316)(296, 310)(297, 319)(301, 308)(302, 325)(306, 341)(309, 342)(312, 367)(314, 337)(318, 359)(320, 331)(323, 344)(326, 383)(334, 348)(336, 356)(343, 355)(345, 347)(351, 363)(353, 370)(357, 376)(358, 368)(371, 384)(375, 382)
d: (2, 79)(3, 4)(6, 147)(7, 36)(8, 88)(9, 51)(10, 84)(11, 15)(12, 18)(13, 17)(14, 19)(16, 35)(20, 90)(21, 22)(23, 156)(24, 153)(25, 145)(26, 148)(27, 89)(28, 33)(30, 31)(32, 68)(34, 139)(37, 115)(38, 114)(39, 81)(40, 78)(41, 80)(42, 49)(43, 48)(44, 50)(45, 54)(46, 53)(47, 132)(52, 56)(55, 110)(57, 58)(59, 191)(60, 74)(61, 101)(62, 102)(63, 190)(64, 85)(65, 87)(66, 86)(67, 75)(69, 154)(70, 123)(71, 143)(72, 150)(73, 151)(76, 96)(77, 83)(91, 105)(92, 171)(93, 133)(94, 129)(95, 109)(97, 107)(98, 108)(99, 113)(100, 112)(103, 121)(104, 118)(106, 119)(111, 131)(116, 120)(117, 166)(122, 124)(125, 177)(126, 176)(127, 142)(128, 163)(130, 144)(134, 155)(135, 149)(136, 186)(137, 141)(138, 152)(140, 180)(146, 160)(157, 173)(158, 169)(159, 168)(161, 167)(162, 170)(164, 175)(165, 174)(172, 178)(179, 188)(181, 182)(183, 192)(184, 187)(185, 189)(193, 251)(194, 309)(195, 286)(196, 343)(197, 249)(198, 299)(199, 300)(200, 358)(201, 262)(202, 282)(203, 230)(204, 322)(205, 325)(206, 294)(207, 375)(208, 355)(209, 231)(210, 258)(211, 333)(212, 331)(213, 379)(214, 239)(215, 348)(216, 323)(217, 361)(218, 303)(219, 247)(220, 240)(221, 360)(222, 285)(223, 273)(224, 283)(225, 235)(226, 349)(227, 319)(228, 312)(229, 269)(232, 244)(233, 340)(234, 308)(236, 339)(237, 256)(238, 307)(241, 243)(242, 268)(245, 313)(246, 356)(248, 253)(250, 328)(252, 284)(254, 352)(255, 272)(257, 279)(259, 327)(260, 354)(261, 334)(263, 367)(264, 344)(265, 377)(266, 276)(267, 287)(270, 370)(271, 305)(274, 316)(275, 341)(277, 350)(278, 302)(280, 369)(281, 368)(288, 383)(289, 295)(290, 315)(291, 362)(292, 357)(293, 378)(296, 371)(297, 304)(298, 382)(301, 381)(306, 329)(310, 384)(311, 376)(314, 359)(317, 353)(318, 337)(320, 321)(324, 336)(326, 346)(330, 373)(332, 366)(335, 374)(338, 380)(342, 364)(345, 363)(347, 351)(365, 372)
e: (6, 91)(11, 54)(15, 45)(23, 96)(24, 117)(25, 60)(26, 55)(27, 93)(32, 94)(42, 62)(43, 61)(44, 57)(47, 85)(48, 101)(49, 102)(50, 58)(59, 175)(63, 140)(64, 132)(65, 171)(66, 173)(67, 135)(68, 129)(69, 130)(70, 131)(71, 97)(72, 118)(73, 119)(74, 145)(75, 149)(76, 156)(77, 120)(83, 116)(86, 157)(87, 92)(89, 133)(95, 161)(98, 134)(99, 121)(100, 122)(103, 113)(104, 150)(105, 147)(106, 151)(107, 143)(108, 155)(109, 167)(110, 148)(111, 123)(112, 124)(125, 169)(126, 186)(127, 152)(128, 141)(136, 176)(137, 163)(138, 142)(144, 154)(146, 170)(153, 166)(158, 177)(159, 178)(160, 162)(164, 191)(165, 183)(168, 172)(174, 192)(179, 189)(180, 190)(181, 184)(182, 187)(185, 188)(194, 312)(195, 306)(197, 212)(200, 337)(202, 282)(203, 229)(204, 207)(205, 324)(208, 273)(209, 289)(210, 265)(211, 365)(216, 330)(218, 349)(220, 320)(222, 357)(223, 355)(224, 238)(225, 317)(226, 303)(227, 367)(228, 309)(230, 269)(231, 295)(232, 277)(235, 353)(237, 316)(240, 321)(241, 328)(242, 270)(243, 250)(244, 350)(246, 278)(249, 331)(252, 346)(256, 274)(258, 377)(259, 280)(260, 378)(263, 319)(268, 370)(283, 307)(284, 326)(285, 292)(286, 329)(288, 383)(290, 338)(293, 354)(296, 304)(297, 371)(302, 356)(310, 364)(315, 380)(318, 358)(322, 375)(323, 373)(325, 336)(327, 369)(333, 372)(342, 384)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 535 ]
384
-1 287 332 267 366
-2 266 201 366 236
-3 264 300 305 360
-4 199 221 344 271
-5 308 234 301 381
-6 286 287 322 269
-7 199 255 236 291
-8 264 276 368 217
-9 193 347 271 206
-10 308 376 236 314
-11 211 279 216 273
-12 343 214 271 219
-13 308 332 334 340
-14 264 213 345 248
-15 223 333 257 323
-16 363 279 313 362
-17 233 234 366 261
-18 247 239 305 196
-19 253 363 344 379
-20 308 352 281 382
-21 299 345 239 272
-22 198 363 255 214
-23 201 324 346 241
-24 231 280 194 360
-25 199 342 203 250
-26 322 301 357 337
-27 223 322 193 226
-28 279 291 193 305
-29 233 217 361 340
-30 213 247 206 339
-31 236 379 294 219
-32 358 216 229 340
-33 257 271 251 362
-34 264 341 311 215
-35 245 257 345 291
-36 300 272 339 362
-37 275 366 335 382
-38 254 215 239 262
-39 253 343 291 382
-40 374 359 217 239
-41 363 245 206 351
-42 321 224 314 252
-43 276 223 380 371
-44 354 347 216 218
-45 355 257 372 373
-46 267 301 348 217
-47 269 227 196 240
-48 266 338 273 296
-49 320 359 283 284
-50 323 303 260 351
-51 294 305 251 351
-52 298 299 206 360
-53 287 215 381 361
-54 330 365 279 208
-55 375 200 222 301
-56 198 221 294 382
-57 330 347 293 349
-58 378 226 351 373
-59 286 288 246 338
-60 199 243 229 384
-61 297 276 355 315
-62 346 314 238 240
-63 364 211 237 350
-64 320 343 203 263
-65 323 334 357 329
-66 242 280 248 296
-67 374 309 223 249
-68 200 233 323 269
-69 247 327 295 296
-70 320 379 285 384
-71 224 281 326 241
-72 270 194 272 327
-73 198 319 250 285
-74 310 300 269 241
-75 335 194 273 197
-76 325 250 262 284
-77 322 313 260 372
-78 214 335 314 361
-79 276 332 262 339
-80 345 313 347 294
-81 298 248 196 362
-82 334 215 348 261
-83 354 365 245 204
-84 234 311 359 339
-85 321 367 196 230
-86 253 268 369 371
-87 292 216 261 306
-88 266 344 281 361
-89 204 349 251 273
-90 254 298 234 368
-91 287 375 230 329
-92 330 195 261 285
-93 375 355 193 303
-94 330 203 318 340
-95 212 258 282 337
-96 201 205 328 252
-97 281 238 284 328
-98 309 311 260 315
-99 275 321 324 284
-100 254 331 260 371
-101 266 290 304 208
-102 220 326 359 307
-103 220 341 346 325
-104 255 268 280 228
-105 267 203 207 306
-106 299 367 357 241
-107 368 250 252 307
-108 354 376 290 194
-109 210 331 202 318
-110 358 381 207 285
-111 364 213 357 240
-112 352 354 212 296
-113 341 320 336 252
-114 352 201 214 348
-115 341 374 298 332
-116 211 245 293 207
-117 312 259 360 295
-118 242 312 369 272
-119 198 243 292 263
-120 375 333 378 313
-121 275 205 326 240
-122 297 254 378 249
-123 222 310 321 213
-124 352 293 304 197
-125 256 377 268 324
-126 231 356 225 307
-127 232 342 353 226
-128 288 377 290 337
-129 233 337 230 373
-130 231 247 369 304
-131 220 342 379 292
-132 220 319 343 229
-133 207 218 251 208
-134 311 378 380 228
-135 374 331 355 228
-136 353 278 289 224
-137 210 288 358 380
-138 310 225 218 350
-139 275 376 344 348
-140 244 310 365 316
-141 200 258 338 383
-142 364 244 349 317
-143 243 346 368 283
-144 209 297 280 219
-145 364 300 328 230
-146 202 302 249 195
-147 267 204 195 229
-148 204 292 381 318
-149 212 312 335 208
-150 309 255 259 370
-151 222 299 227 328
-152 277 235 303 384
-153 209 221 309 369
-154 289 259 371 219
-155 376 312 293 338
-156 243 336 326 262
-157 253 297 370 327
-158 210 270 325 316
-159 319 256 350 372
-160 286 278 282 197
-161 200 377 202 197
-162 212 202 246 329
-163 265 315 383 318
-164 288 302 315 306
-165 235 226 350 263
-166 221 289 228 327
-167 265 358 249 282
-168 277 365 237 227
-169 258 205 370 274
-170 331 356 282 306
-171 286 222 334 373
-172 232 211 367 316
-173 248 259 270 304
-174 277 367 225 349
-175 278 290 383 329
-176 209 235 246 238
-177 242 265 237 336
-178 244 333 263 274
-179 356 237 325 295
-180 232 372 274 384
-181 377 224 235 370
-182 265 225 270 283
-183 319 353 244 303
-184 353 268 258 238
-185 209 278 324 274
-186 302 283 295 317
-187 242 210 317 307
-188 256 289 246 205
-189 231 302 336 316
-190 342 277 256 333
-191 356 380 195 383
-192 232 227 218 317
-193 27 93 28 9
-194 24 72 75 108
-195 146 92 147 191
-196 47 81 18 85
-197 124 160 161 75
-198 22 56 73 119
-199 25 4 60 7
-200 55 68 161 141
-201 23 2 114 96
-202 146 161 162 109
-203 25 94 105 64
-204 89 147 148 83
-205 121 188 169 96
-206 30 41 52 9
-207 110 133 105 116
-208 133 101 149 54
-209 176 144 185 153
-210 187 158 137 109
-211 11 116 172 63
-212 112 149 95 162
-213 111 123 14 30
-214 22 12 78 114
-215 34 38 82 53
-216 11 44 32 87
-217 46 29 40 8
-218 44 133 192 138
-219 154 12 144 31
-220 132 102 103 131
-221 56 166 4 153
-222 55 123 171 151
-223 67 15 27 43
-224 136 71 181 42
-225 126 138 182 174
-226 165 58 27 127
-227 47 168 192 151
-228 166 134 135 104
-229 132 147 60 32
-230 145 91 85 129
-231 24 189 126 130
-232 180 192 127 172
-233 68 17 29 129
-234 90 5 17 84
-235 165 176 181 152
-236 2 7 31 10
-237 177 168 179 63
-238 176 62 184 97
-239 38 18 40 21
-240 121 111 47 62
-241 23 71 106 74
-242 66 187 177 118
-243 143 156 60 119
-244 178 183 140 142
-245 35 83 116 41
-246 176 188 59 162
-247 69 18 30 130
-248 66 14 81 173
-249 67 122 167 146
-250 25 73 107 76
-251 33 89 133 51
-252 113 96 107 42
-253 157 39 19 86
-254 100 122 90 38
-255 22 104 7 150
-256 188 190 125 159
-257 33 45 35 15
-258 169 95 184 141
-259 154 117 150 173
-260 77 100 50 98
-261 92 82 17 87
-262 79 156 38 76
-263 165 178 64 119
-264 34 3 14 8
-265 177 167 182 163
-266 88 2 101 48
-267 1 46 147 105
-268 125 104 184 86
-269 68 47 6 74
-270 158 72 182 173
-271 33 12 4 9
-272 36 72 118 21
-273 11 89 48 75
-274 178 169 180 185
-275 99 121 37 139
-276 79 61 8 43
-277 168 190 152 174
-278 136 160 185 175
-279 11 16 28 54
-280 66 144 24 104
-281 88 71 20 97
-282 167 170 160 95
-283 143 49 182 186
-284 99 49 97 76
-285 110 70 92 73
-286 59 6 160 171
-287 1 91 6 53
-288 59 137 128 164
-289 154 166 188 136
-290 101 128 108 175
-291 35 28 39 7
-292 148 119 87 131
-293 155 57 124 116
-294 56 80 51 31
-295 69 179 117 186
-296 66 112 69 48
-297 122 144 157 61
-298 90 81 115 52
-299 106 52 151 21
-300 145 3 36 74
-301 55 46 26 5
-302 189 146 164 186
-303 93 50 183 152
-304 101 124 173 130
-305 3 28 18 51
-306 170 105 87 164
-307 187 102 126 107
-308 13 5 20 10
-309 67 150 98 153
-310 123 138 74 140
-311 34 134 84 98
-312 155 149 117 118
-313 77 80 16 120
-314 78 62 42 10
-315 61 163 98 164
-316 189 158 172 140
-317 187 192 142 186
-318 148 94 163 109
-319 132 159 73 183
-320 113 70 49 64
-321 99 123 85 42
-322 77 26 27 6
-323 68 15 50 65
-324 99 23 125 185
-325 179 103 158 76
-326 121 156 102 71
-327 166 69 157 72
-328 145 96 151 97
-329 91 162 65 175
-330 57 92 94 54
-331 100 135 170 109
-332 1 13 79 115
-333 178 190 15 120
-334 13 82 171 65
-335 78 37 149 75
-336 177 156 189 113
-337 26 95 128 129
-338 155 48 59 141
-339 79 36 84 30
-340 13 94 29 32
-341 34 113 103 115
-342 25 190 127 131
-343 132 12 39 64
-344 88 4 139 19
-345 35 14 80 21
-346 143 23 103 62
-347 44 57 80 9
-348 46 114 82 139
-349 89 57 174 142
-350 165 159 138 63
-351 58 50 51 41
-352 112 124 114 20
-353 136 127 183 184
-354 44 112 83 108
-355 45 135 93 61
-356 179 191 126 170
-357 111 26 106 65
-358 110 167 137 32
-359 102 49 40 84
-360 24 3 117 52
-361 88 78 29 53
-362 33 36 81 16
-363 22 16 19 41
-364 111 145 63 142
-365 168 83 140 54
-366 1 2 37 17
-367 106 172 85 174
-368 143 90 8 107
-369 118 86 130 153
-370 157 169 181 150
-371 154 100 86 43
-372 77 45 180 159
-373 45 58 171 129
-374 67 135 115 40
-375 55 91 93 120
-376 155 139 108 10
-377 125 181 128 161
-378 122 134 58 120
-379 70 19 31 131
-380 134 191 137 43
-381 110 5 148 53
-382 56 37 39 20
-383 191 141 163 175
-384 70 180 60 152
0

**************