[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 392, 6 ]. See Glossary for some
detail.
{4, 4}_[ 28, 7] = PS( 56, 7; 1) = PS( 56, 14; 1)
= MPS( 28, 14; 1) = PS( 7, 56; 1) = PS( 14, 56; 1)
= MPS( 7, 56; 1) = MPS( 14, 56; 27) = UG(ATD[392, 17])
= UG(ATD[392, 18]) = UG(ATD[392, 19]) = MG(Rmap(392, 30) { 14, 56| 14}_ 56)
= DG(Rmap(392, 30) { 14, 56| 14}_ 56) = MG(Rmap(392, 32) { 14, 56| 2}_ 56) =
DG(Rmap(392, 32) { 14, 56| 2}_ 56)
= DG(Rmap(392, 33) { 56, 14| 2}_ 56) = DG(Rmap(392, 34) { 56, 14| 14}_ 56) =
BGCG({4, 4}_[ 14, 7]; K1;1)
= AT[392, 10]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | - | 0 22 | - | - | - | - | 0 22 |
2 | 0 34 | - | 0 22 | - | - | - | - |
3 | - | 0 34 | - | 0 22 | - | - | - |
4 | - | - | 0 34 | - | 0 22 | - | - |
5 | - | - | - | 0 34 | - | 0 22 | - |
6 | - | - | - | - | 0 34 | - | 1 23 |
7 | 0 34 | - | - | - | - | 33 55 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | 1 55 | 0 | - | - | - | - | 0 |
2 | 0 | 1 55 | 0 | - | - | - | - |
3 | - | 0 | 1 55 | 0 | - | - | - |
4 | - | - | 0 | 1 55 | 0 | - | - |
5 | - | - | - | 0 | 1 55 | 0 | - |
6 | - | - | - | - | 0 | 1 55 | 7 |
7 | 0 | - | - | - | - | 49 | 1 55 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | 1 55 | 0 54 | - | - | - | - | - |
2 | 0 2 | - | 0 54 | - | - | - | - |
3 | - | 0 2 | - | 0 54 | - | - | - |
4 | - | - | 0 2 | - | 0 54 | - | - |
5 | - | - | - | 0 2 | - | 0 54 | - |
6 | - | - | - | - | 0 2 | - | 0 54 |
7 | - | - | - | - | - | 0 2 | 1 55 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | 0 | 0 |
2 | 0 | - | 1 | 0 | - | - | 1 |
3 | 0 | 55 | - | 0 | 55 | - | - |
4 | - | 0 | 0 | - | 0 | 18 | - |
5 | - | - | 1 | 0 | - | 19 | 19 |
6 | 0 | - | - | 38 | 37 | - | 1 |
7 | 0 | 55 | - | - | 37 | 55 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | 0 | 0 |
2 | 0 | - | 1 | 0 | - | - | 1 |
3 | 0 | 55 | - | 0 | 55 | - | - |
4 | - | 0 | 0 | - | 0 | 4 | - |
5 | - | - | 1 | 0 | - | 5 | 5 |
6 | 0 | - | - | 52 | 51 | - | 1 |
7 | 0 | 55 | - | - | 51 | 55 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | - | 0 8 | - | - | - | - | 0 8 |
2 | 0 48 | - | 0 8 | - | - | - | - |
3 | - | 0 48 | - | 0 8 | - | - | - |
4 | - | - | 0 48 | - | 0 8 | - | - |
5 | - | - | - | 0 48 | - | 0 8 | - |
6 | - | - | - | - | 0 48 | - | 1 9 |
7 | 0 48 | - | - | - | - | 47 55 | - |