C4graphConstructions for C4[ 392, 6 ] = {4,4}_[28,7]

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 392, 6 ]. See Glossary for some detail.

{4, 4}_[ 28, 7] = PS( 56, 7; 1) = PS( 56, 14; 1)

      = MPS( 28, 14; 1) = PS( 7, 56; 1) = PS( 14, 56; 1)

      = MPS( 7, 56; 1) = MPS( 14, 56; 27) = UG(ATD[392, 17])

      = UG(ATD[392, 18]) = UG(ATD[392, 19]) = MG(Rmap(392, 30) { 14, 56| 14}_ 56)

      = DG(Rmap(392, 30) { 14, 56| 14}_ 56) = MG(Rmap(392, 32) { 14, 56| 2}_ 56) = DG(Rmap(392, 32) { 14, 56| 2}_ 56)

      = DG(Rmap(392, 33) { 56, 14| 2}_ 56) = DG(Rmap(392, 34) { 56, 14| 14}_ 56) = BGCG({4, 4}_[ 14, 7]; K1;1)

      = AT[392, 10]

Cyclic coverings

mod 56:
1234567
1 - 0 22 - - - - 0 22
2 0 34 - 0 22 - - - -
3 - 0 34 - 0 22 - - -
4 - - 0 34 - 0 22 - -
5 - - - 0 34 - 0 22 -
6 - - - - 0 34 - 1 23
7 0 34 - - - - 33 55 -

mod 56:
1234567
1 1 55 0 - - - - 0
2 0 1 55 0 - - - -
3 - 0 1 55 0 - - -
4 - - 0 1 55 0 - -
5 - - - 0 1 55 0 -
6 - - - - 0 1 55 7
7 0 - - - - 49 1 55

mod 56:
1234567
1 1 55 0 54 - - - - -
2 0 2 - 0 54 - - - -
3 - 0 2 - 0 54 - - -
4 - - 0 2 - 0 54 - -
5 - - - 0 2 - 0 54 -
6 - - - - 0 2 - 0 54
7 - - - - - 0 2 1 55

mod 56:
1234567
1 - 0 0 - - 0 0
2 0 - 1 0 - - 1
3 0 55 - 0 55 - -
4 - 0 0 - 0 18 -
5 - - 1 0 - 19 19
6 0 - - 38 37 - 1
7 0 55 - - 37 55 -

mod 56:
1234567
1 - 0 0 - - 0 0
2 0 - 1 0 - - 1
3 0 55 - 0 55 - -
4 - 0 0 - 0 4 -
5 - - 1 0 - 5 5
6 0 - - 52 51 - 1
7 0 55 - - 51 55 -

mod 56:
1234567
1 - 0 8 - - - - 0 8
2 0 48 - 0 8 - - - -
3 - 0 48 - 0 8 - - -
4 - - 0 48 - 0 8 - -
5 - - - 0 48 - 0 8 -
6 - - - - 0 48 - 1 9
7 0 48 - - - - 47 55 -