C4graphGraph forms for C4 [ 400, 86 ] = BGCG({4,4}_10,10;K1;{5,7,8,9})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 400, 86 ] = BGCG({4,4}_10,10;K1;{5,7,8,9}).

(I) Following is a form readable by MAGMA:

g:=Graph<400|{ {194, 207}, {200, 216}, {197, 216}, {192, 238}, {198, 248}, {171, 235}, {156, 222}, {172, 238}, {170, 232}, {157, 222}, {143, 202}, {173, 232}, {169, 238}, {184, 255}, {172, 235}, {181, 255}, {157, 214}, {184, 244}, {185, 245}, {158, 211}, {185, 244}, {181, 248}, {159, 209}, {186, 245}, {157, 204}, {189, 238}, {154, 204}, {166, 240}, {146, 202}, {169, 240}, {140, 214}, {164, 255}, {141, 211}, {161, 255}, {137, 214}, {146, 242}, {174, 207}, {178, 211}, {146, 240}, {174, 204}, {145, 242}, {185, 218}, {171, 207}, {149, 240}, {175, 201}, {188, 218}, {177, 216}, {177, 219}, {176, 219}, {161, 205}, {180, 216}, {162, 205}, {191, 207}, {153, 232}, {163, 210}, {160, 209}, {161, 211}, {168, 218}, {128, 246}, {164, 210}, {160, 214}, {129, 246}, {139, 243}, {146, 234}, {147, 234}, {176, 201}, {155, 225}, {173, 215}, {136, 243}, {172, 215}, {154, 225}, {177, 204}, {150, 232}, {171, 213}, {165, 218}, {170, 213}, {102, 230}, {102, 229}, {80, 212}, {119, 243}, {99, 230}, {116, 243}, {101, 237}, {125, 245}, {105, 224}, {102, 237}, {126, 245}, {81, 221}, {105, 229}, {108, 224}, {95, 208}, {94, 206}, {119, 230}, {78, 221}, {104, 251}, {95, 203}, {104, 252}, {91, 206}, {94, 203}, {65, 217}, {125, 229}, {77, 212}, {126, 228}, {103, 252}, {127, 228}, {68, 217}, {101, 251}, {122, 229}, {71, 231}, {76, 236}, {86, 247}, {111, 206}, {115, 208}, {86, 242}, {92, 249}, {66, 228}, {95, 249}, {113, 215}, {118, 208}, {67, 228}, {85, 242}, {75, 236}, {72, 239}, {112, 215}, {71, 239}, {82, 250}, {81, 251}, {74, 231}, {79, 226}, {89, 247}, {117, 219}, {84, 251}, {85, 250}, {116, 219}, {72, 249}, {123, 202}, {68, 246}, {75, 249}, {69, 247}, {98, 208}, {99, 209}, {69, 246}, {82, 230}, {126, 202}, {66, 247}, {85, 224}, {100, 209}, {88, 224}, {75, 241}, {83, 233}, {111, 213}, {65, 250}, {82, 233}, {110, 213}, {114, 206}, {97, 223}, {78, 241}, {96, 223}, {98, 221}, {33, 227}, {54, 244}, {55, 244}, {41, 237}, {62, 250}, {58, 254}, {25, 220}, {55, 241}, {36, 227}, {42, 237}, {42, 226}, {22, 220}, {58, 241}, {25, 201}, {44, 252}, {54, 231}, {31, 205}, {26, 201}, {51, 231}, {41, 254}, {43, 252}, {6, 222}, {38, 254}, {7, 222}, {59, 226}, {62, 226}, {61, 221}, {12, 239}, {15, 236}, {5, 225}, {11, 239}, {4, 225}, {24, 253}, {21, 253}, {60, 212}, {35, 203}, {34, 203}, {48, 217}, {21, 254}, {32, 205}, {57, 212}, {13, 227}, {8, 248}, {34, 210}, {45, 220}, {11, 248}, {33, 210}, {16, 227}, {45, 217}, {42, 220}, {4, 253}, {16, 234}, {37, 223}, {17, 234}, {36, 223}, {1, 253}, {16, 236}, {22, 235}, {21, 235}, {23, 233}, {22, 233}, {52, 308}, {106, 362}, {53, 308}, {82, 339}, {55, 310}, {52, 310}, {88, 346}, {81, 339}, {2, 257}, {89, 346}, {37, 294}, {4, 263}, {97, 354}, {105, 362}, {115, 368}, {136, 395}, {3, 263}, {34, 294}, {7, 259}, {5, 257}, {108, 360}, {116, 368}, {128, 388}, {23, 274}, {79, 329}, {120, 382}, {78, 329}, {111, 360}, {20, 284}, {67, 331}, {41, 289}, {39, 303}, {26, 274}, {50, 315}, {104, 353}, {119, 382}, {127, 374}, {49, 315}, {107, 353}, {133, 399}, {8, 259}, {92, 343}, {36, 303}, {130, 398}, {44, 289}, {70, 331}, {130, 399}, {131, 398}, {17, 287}, {89, 343}, {133, 395}, {18, 258}, {54, 294}, {3, 274}, {14, 287}, {118, 359}, {56, 298}, {153, 395}, {117, 359}, {17, 258}, {35, 304}, {110, 381}, {1, 277}, {66, 342}, {59, 303}, {36, 304}, {6, 274}, {35, 310}, {24, 270}, {32, 310}, {107, 381}, {2, 277}, {156, 395}, {81, 326}, {65, 342}, {56, 303}, {25, 270}, {9, 286}, {6, 286}, {69, 349}, {73, 336}, {26, 256}, {74, 336}, {30, 260}, {96, 378}, {122, 352}, {27, 256}, {70, 349}, {123, 352}, {16, 268}, {73, 341}, {61, 289}, {1, 284}, {72, 341}, {93, 320}, {124, 353}, {127, 353}, {19, 268}, {57, 294}, {53, 298}, {121, 358}, {18, 306}, {96, 320}, {19, 306}, {100, 326}, {79, 364}, {8, 300}, {91, 383}, {9, 300}, {90, 383}, {33, 260}, {95, 378}, {48, 278}, {163, 389}, {114, 340}, {121, 351}, {90, 381}, {162, 389}, {112, 343}, {115, 340}, {117, 338}, {3, 299}, {74, 354}, {61, 277}, {98, 330}, {107, 323}, {90, 371}, {99, 330}, {106, 323}, {117, 348}, {118, 351}, {2, 296}, {89, 371}, {87, 381}, {120, 338}, {3, 296}, {62, 277}, {188, 400}, {13, 291}, {114, 348}, {12, 291}, {191, 400}, {77, 354}, {41, 262}, {53, 260}, {113, 320}, {97, 338}, {125, 334}, {116, 320}, {182, 387}, {50, 260}, {181, 387}, {80, 358}, {100, 338}, {51, 267}, {188, 388}, {92, 356}, {63, 263}, {47, 278}, {51, 266}, {50, 267}, {93, 356}, {60, 262}, {101, 351}, {109, 343}, {80, 364}, {94, 354}, {29, 288}, {30, 288}, {52, 266}, {20, 299}, {187, 388}, {183, 392}, {12, 332}, {200, 392}, {67, 259}, {43, 363}, {120, 313}, {15, 333}, {60, 382}, {45, 367}, {28, 350}, {123, 313}, {40, 363}, {44, 367}, {106, 297}, {32, 356}, {73, 269}, {46, 362}, {109, 297}, {9, 332}, {76, 265}, {59, 382}, {38, 355}, {33, 356}, {28, 346}, {79, 265}, {37, 355}, {25, 350}, {87, 272}, {68, 259}, {64, 263}, {55, 368}, {45, 362}, {29, 346}, {120, 319}, {56, 368}, {88, 272}, {71, 271}, {199, 397}, {68, 271}, {198, 397}, {70, 269}, {78, 258}, {98, 302}, {77, 258}, {97, 302}, {6, 342}, {93, 269}, {77, 285}, {20, 325}, {76, 285}, {40, 377}, {29, 332}, {5, 342}, {21, 326}, {9, 349}, {91, 271}, {17, 325}, {115, 295}, {110, 315}, {8, 350}, {86, 256}, {34, 372}, {104, 318}, {109, 315}, {10, 349}, {90, 269}, {88, 271}, {87, 256}, {60, 363}, {105, 318}, {112, 295}, {126, 297}, {65, 281}, {27, 322}, {64, 281}, {84, 270}, {101, 319}, {119, 301}, {5, 350}, {85, 270}, {61, 358}, {118, 301}, {13, 336}, {58, 359}, {48, 365}, {14, 336}, {62, 352}, {57, 359}, {51, 365}, {39, 377}, {28, 322}, {103, 313}, {18, 333}, {63, 352}, {31, 383}, {56, 344}, {37, 325}, {30, 383}, {64, 289}, {57, 344}, {123, 282}, {42, 328}, {43, 328}, {84, 311}, {73, 298}, {10, 366}, {87, 307}, {83, 311}, {47, 331}, {24, 380}, {125, 281}, {111, 266}, {124, 281}, {76, 298}, {124, 282}, {84, 307}, {47, 327}, {124, 276}, {7, 366}, {46, 327}, {96, 265}, {99, 265}, {23, 380}, {38, 333}, {31, 372}, {32, 332}, {38, 330}, {93, 305}, {39, 330}, {40, 325}, {121, 276}, {35, 333}, {40, 326}, {94, 305}, {30, 366}, {67, 307}, {28, 365}, {10, 376}, {31, 365}, {11, 376}, {64, 307}, {15, 379}, {7, 370}, {27, 366}, {14, 379}, {4, 370}, {109, 283}, {108, 283}, {20, 364}, {50, 331}, {91, 290}, {14, 372}, {59, 321}, {108, 278}, {112, 266}, {58, 321}, {23, 363}, {12, 369}, {107, 278}, {15, 369}, {92, 290}, {75, 309}, {11, 372}, {74, 309}, {19, 364}, {122, 261}, {189, 317}, {2, 384}, {197, 327}, {182, 308}, {18, 400}, {10, 392}, {147, 272}, {196, 327}, {190, 317}, {183, 308}, {144, 276}, {156, 280}, {148, 272}, {151, 275}, {13, 392}, {162, 292}, {143, 264}, {159, 280}, {192, 328}, {154, 275}, {193, 328}, {150, 284}, {175, 293}, {142, 261}, {196, 335}, {180, 319}, {151, 284}, {155, 279}, {139, 261}, {193, 335}, {152, 279}, {131, 275}, {1, 400}, {29, 396}, {182, 292}, {19, 384}, {179, 288}, {137, 285}, {180, 288}, {134, 275}, {190, 299}, {165, 304}, {136, 285}, {22, 384}, {166, 304}, {26, 396}, {135, 273}, {178, 293}, {179, 292}, {193, 345}, {136, 273}, {141, 276}, {159, 261}, {164, 318}, {165, 318}, {194, 345}, {192, 347}, {164, 312}, {27, 390}, {24, 390}, {179, 301}, {161, 319}, {167, 312}, {178, 301}, {135, 295}, {43, 393}, {184, 282}, {46, 396}, {132, 295}, {187, 287}, {148, 306}, {39, 384}, {184, 287}, {46, 393}, {144, 311}, {149, 306}, {129, 297}, {176, 280}, {160, 264}, {153, 305}, {144, 312}, {47, 390}, {44, 390}, {147, 312}, {179, 280}, {163, 264}, {154, 305}, {143, 291}, {195, 367}, {142, 291}, {194, 367}, {183, 282}, {138, 314}, {194, 370}, {158, 302}, {152, 296}, {140, 316}, {153, 296}, {189, 268}, {135, 309}, {169, 283}, {158, 300}, {49, 386}, {168, 283}, {159, 300}, {157, 302}, {134, 309}, {137, 314}, {140, 313}, {151, 290}, {52, 386}, {186, 268}, {63, 393}, {139, 316}, {197, 370}, {143, 311}, {190, 262}, {175, 279}, {191, 262}, {152, 290}, {172, 279}, {49, 397}, {180, 264}, {54, 394}, {129, 317}, {48, 397}, {49, 396}, {63, 385}, {181, 267}, {53, 394}, {130, 317}, {145, 337}, {168, 361}, {192, 257}, {139, 329}, {195, 257}, {171, 361}, {138, 329}, {200, 267}, {167, 355}, {69, 386}, {182, 369}, {70, 398}, {185, 369}, {71, 398}, {190, 375}, {72, 386}, {66, 393}, {168, 355}, {187, 375}, {128, 334}, {133, 341}, {169, 377}, {167, 375}, {80, 385}, {173, 380}, {86, 391}, {132, 341}, {83, 385}, {195, 273}, {174, 380}, {170, 377}, {83, 391}, {137, 348}, {196, 273}, {138, 351}, {131, 347}, {160, 376}, {199, 286}, {134, 348}, {196, 286}, {148, 334}, {133, 345}, {142, 339}, {170, 375}, {141, 339}, {132, 347}, {134, 345}, {142, 337}, {145, 334}, {103, 391}, {150, 374}, {110, 399}, {155, 378}, {132, 357}, {103, 389}, {186, 344}, {173, 335}, {166, 324}, {102, 389}, {199, 292}, {198, 293}, {187, 344}, {129, 357}, {191, 347}, {167, 323}, {100, 385}, {166, 323}, {147, 374}, {150, 371}, {149, 371}, {195, 293}, {156, 378}, {163, 324}, {128, 360}, {140, 358}, {193, 299}, {145, 379}, {131, 360}, {158, 373}, {144, 379}, {106, 391}, {155, 373}, {149, 357}, {178, 322}, {135, 373}, {162, 337}, {183, 324}, {177, 322}, {130, 374}, {200, 316}, {165, 337}, {141, 376}, {114, 394}, {122, 387}, {121, 387}, {174, 340}, {113, 394}, {199, 316}, {175, 340}, {127, 388}, {189, 321}, {198, 314}, {148, 361}, {188, 321}, {152, 357}, {113, 399}, {186, 324}, {151, 361}, {138, 373}, {197, 314}, {176, 335} }>;

(II) A more general form is to represent the graph as the orbit of {194, 207} under the group generated by the following permutations:

a: (1, 2)(3, 20)(4, 19)(5, 18)(6, 17)(7, 16)(8, 15)(9, 14)(10, 13)(11, 12)(21, 22)(23, 40)(24, 39)(25, 38)(26, 37)(27, 36)(28, 35)(29, 34)(30, 33)(31, 32)(41, 42)(43, 60)(44, 59)(45, 58)(46, 57)(47, 56)(48, 55)(49, 54)(50, 53)(51, 52)(61, 62)(63, 80)(64, 79)(65, 78)(66, 77)(67, 76)(68, 75)(69, 74)(70, 73)(71, 72)(81, 82)(83, 100)(84, 99)(85, 98)(86, 97)(87, 96)(88, 95)(89, 94)(90, 93)(91, 92)(101, 102)(103, 120)(104, 119)(105, 118)(106, 117)(107, 116)(108, 115)(109, 114)(110, 113)(111, 112)(121, 122)(123, 140)(124, 139)(125, 138)(126, 137)(127, 136)(128, 135)(129, 134)(130, 133)(131, 132)(141, 142)(143, 160)(144, 159)(145, 158)(146, 157)(147, 156)(148, 155)(149, 154)(150, 153)(151, 152)(161, 162)(163, 180)(164, 179)(165, 178)(166, 177)(167, 176)(168, 175)(169, 174)(170, 173)(171, 172)(181, 182)(183, 200)(184, 199)(185, 198)(186, 197)(187, 196)(188, 195)(189, 194)(190, 193)(191, 192)(201, 355)(202, 214)(203, 346)(204, 240)(206, 343)(207, 238)(208, 224)(209, 311)(210, 288)(211, 337)(212, 393)(213, 215)(216, 324)(217, 241)(218, 293)(219, 323)(220, 254)(221, 250)(222, 234)(223, 256)(225, 306)(226, 289)(227, 366)(228, 285)(229, 351)(230, 251)(231, 386)(233, 326)(236, 259)(242, 302)(243, 353)(244, 397)(245, 314)(246, 309)(247, 354)(248, 369)(249, 271)(252, 382)(253, 384)(255, 292)(257, 400)(258, 342)(261, 276)(262, 328)(263, 364)(265, 307)(267, 308)(268, 370)(270, 330)(272, 378)(273, 388)(274, 325)(275, 357)(278, 368)(279, 361)(280, 312)(281, 329)(282, 316)(283, 340)(284, 296)(286, 287)(291, 376)(294, 396)(295, 360)(297, 348)(298, 331)(300, 379)(301, 318)(303, 390)(304, 322)(305, 371)(310, 365)(315, 394)(317, 345)(319, 389)(320, 381)(321, 367)(327, 344)(332, 372)(333, 350)(334, 373)(335, 375)(336, 349)(338, 391)(341, 398)(352, 358)(356, 383)(359, 362)(374, 395)(377, 380)
b: (2, 191)(3, 171)(4, 151)(5, 131)(6, 111)(7, 91)(8, 71)(9, 51)(10, 31)(12, 181)(13, 161)(14, 141)(15, 121)(16, 101)(17, 81)(18, 61)(19, 41)(20, 21)(22, 190)(23, 170)(24, 150)(25, 130)(26, 110)(27, 90)(28, 70)(29, 50)(32, 200)(33, 180)(34, 160)(35, 140)(36, 120)(37, 100)(38, 80)(39, 60)(42, 189)(43, 169)(44, 149)(45, 129)(46, 109)(47, 89)(48, 69)(52, 199)(53, 179)(54, 159)(55, 139)(56, 119)(57, 99)(58, 79)(62, 188)(63, 168)(64, 148)(65, 128)(66, 108)(67, 88)(72, 198)(73, 178)(74, 158)(75, 138)(76, 118)(77, 98)(82, 187)(83, 167)(84, 147)(85, 127)(86, 107)(92, 197)(93, 177)(94, 157)(95, 137)(96, 117)(102, 186)(103, 166)(104, 146)(105, 126)(112, 196)(113, 176)(114, 156)(115, 136)(122, 185)(123, 165)(124, 145)(132, 195)(133, 175)(134, 155)(142, 184)(143, 164)(152, 194)(153, 174)(162, 183)(172, 193)(201, 399)(202, 318)(203, 214)(204, 305)(205, 392)(206, 222)(207, 296)(208, 285)(209, 294)(210, 264)(211, 336)(212, 330)(213, 274)(215, 335)(216, 356)(217, 246)(218, 352)(219, 320)(220, 317)(221, 258)(223, 338)(224, 228)(225, 275)(226, 321)(227, 319)(229, 245)(230, 344)(231, 300)(232, 380)(233, 375)(234, 251)(235, 299)(236, 351)(237, 268)(238, 328)(239, 248)(240, 252)(241, 329)(242, 353)(243, 368)(244, 261)(247, 278)(249, 314)(250, 388)(253, 284)(254, 364)(255, 291)(256, 381)(257, 347)(259, 271)(260, 288)(262, 384)(263, 361)(265, 359)(266, 286)(267, 332)(269, 322)(270, 374)(272, 307)(273, 295)(276, 379)(277, 400)(279, 345)(280, 394)(281, 334)(282, 337)(283, 393)(287, 339)(289, 306)(290, 370)(292, 308)(293, 341)(297, 362)(298, 301)(302, 354)(303, 382)(304, 313)(309, 373)(310, 316)(311, 312)(315, 396)(323, 391)(324, 389)(325, 326)(327, 343)(331, 346)(333, 358)(340, 395)(342, 360)(348, 378)(349, 365)(350, 398)(355, 385)(357, 367)(363, 377)(366, 383)(369, 387)(371, 390)(372, 376)(386, 397)
c: (2, 21)(3, 41)(4, 61)(5, 81)(6, 101)(7, 121)(8, 141)(9, 161)(10, 181)(12, 31)(13, 51)(14, 71)(15, 91)(16, 111)(17, 131)(18, 151)(19, 171)(20, 191)(23, 42)(24, 62)(25, 82)(26, 102)(27, 122)(28, 142)(29, 162)(30, 182)(33, 52)(34, 72)(35, 92)(36, 112)(37, 132)(38, 152)(39, 172)(40, 192)(44, 63)(45, 83)(46, 103)(47, 123)(48, 143)(49, 163)(50, 183)(54, 73)(55, 93)(56, 113)(57, 133)(58, 153)(59, 173)(60, 193)(65, 84)(66, 104)(67, 124)(68, 144)(69, 164)(70, 184)(75, 94)(76, 114)(77, 134)(78, 154)(79, 174)(80, 194)(86, 105)(87, 125)(88, 145)(89, 165)(90, 185)(96, 115)(97, 135)(98, 155)(99, 175)(100, 195)(107, 126)(108, 146)(109, 166)(110, 186)(117, 136)(118, 156)(119, 176)(120, 196)(128, 147)(129, 167)(130, 187)(138, 157)(139, 177)(140, 197)(149, 168)(150, 188)(159, 178)(160, 198)(170, 189)(180, 199)(201, 230)(202, 278)(203, 249)(204, 329)(205, 332)(206, 236)(207, 364)(208, 378)(209, 293)(210, 386)(211, 300)(212, 345)(213, 268)(214, 314)(215, 303)(216, 316)(217, 311)(218, 371)(219, 243)(220, 233)(221, 225)(222, 351)(223, 295)(224, 242)(226, 380)(227, 266)(228, 353)(229, 256)(231, 336)(232, 321)(234, 360)(235, 384)(237, 274)(238, 377)(239, 372)(240, 283)(241, 305)(244, 269)(245, 381)(246, 312)(247, 318)(248, 376)(250, 270)(251, 342)(252, 393)(253, 277)(254, 296)(255, 349)(257, 326)(258, 275)(259, 276)(260, 308)(261, 322)(262, 299)(263, 289)(264, 397)(265, 340)(267, 392)(271, 379)(272, 334)(273, 338)(279, 330)(280, 301)(281, 307)(282, 331)(284, 400)(285, 348)(286, 319)(287, 398)(288, 292)(290, 333)(291, 365)(294, 341)(297, 323)(298, 394)(302, 373)(304, 343)(306, 361)(309, 354)(310, 356)(313, 327)(315, 324)(317, 375)(320, 368)(325, 347)(328, 363)(335, 382)(337, 346)(339, 350)(344, 399)(352, 390)(355, 357)(358, 370)(359, 395)(362, 391)(366, 387)(367, 385)(369, 383)(374, 388)(389, 396)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 400, 86 ]
400
-1 253 277 400 284
-2 277 257 296 384
-3 299 263 274 296
-4 253 225 370 263
-5 342 257 225 350
-6 286 342 222 274
-7 222 366 259 370
-8 300 248 259 350
-9 286 332 300 349
-10 376 366 392 349
-11 376 248 239 372
-12 332 291 369 239
-13 291 336 227 392
-14 287 379 336 372
-15 333 236 379 369
-16 234 268 236 227
-17 287 234 258 325
-18 333 400 258 306
-19 364 268 306 384
-20 364 299 325 284
-21 253 254 235 326
-22 220 233 235 384
-23 363 233 380 274
-24 253 390 270 380
-25 220 201 270 350
-26 396 201 256 274
-27 256 322 366 390
-28 365 322 346 350
-29 396 288 332 346
-30 288 366 260 383
-31 365 205 372 383
-32 310 332 356 205
-33 210 356 227 260
-34 210 203 294 372
-35 310 333 203 304
-36 223 303 227 304
-37 223 355 325 294
-38 330 254 333 355
-39 330 377 303 384
-40 363 377 325 326
-41 254 289 237 262
-42 220 226 237 328
-43 363 393 328 252
-44 289 367 390 252
-45 220 367 217 362
-46 396 327 393 362
-47 331 278 390 327
-48 397 365 278 217
-49 396 386 397 315
-50 331 267 260 315
-51 231 266 365 267
-52 308 386 266 310
-53 308 298 260 394
-54 231 244 294 394
-55 244 310 368 241
-56 298 344 368 303
-57 212 344 359 294
-58 254 321 359 241
-59 321 226 303 382
-60 363 212 382 262
-61 221 277 289 358
-62 352 277 226 250
-63 352 385 393 263
-64 289 281 263 307
-65 342 281 217 250
-66 342 247 228 393
-67 331 259 228 307
-68 246 259 271 217
-69 386 246 247 349
-70 331 398 269 349
-71 231 398 271 239
-72 341 386 249 239
-73 341 298 269 336
-74 231 309 354 336
-75 309 236 249 241
-76 265 298 236 285
-77 354 212 258 285
-78 221 258 241 329
-79 265 364 226 329
-80 385 364 212 358
-81 221 326 251 339
-82 233 250 339 230
-83 385 233 311 391
-84 311 270 251 307
-85 242 224 270 250
-86 242 256 247 391
-87 256 381 272 307
-88 224 346 271 272
-89 343 247 346 371
-90 269 381 371 383
-91 290 271 206 383
-92 343 290 356 249
-93 320 356 269 305
-94 354 203 206 305
-95 378 203 249 208
-96 265 320 223 378
-97 354 223 302 338
-98 330 221 302 208
-99 209 330 265 230
-100 209 385 326 338
-101 319 237 251 351
-102 389 237 229 230
-103 389 313 391 252
-104 353 251 252 318
-105 224 229 318 362
-106 297 323 391 362
-107 353 278 323 381
-108 278 224 283 360
-109 297 343 315 283
-110 399 213 315 381
-111 266 213 206 360
-112 266 343 215 295
-113 320 399 215 394
-114 348 206 394 340
-115 368 295 208 340
-116 243 320 368 219
-117 348 359 338 219
-118 301 359 208 351
-119 243 301 382 230
-120 319 313 338 382
-121 276 387 358 351
-122 352 387 261 229
-123 352 202 313 282
-124 276 353 281 282
-125 245 334 281 229
-126 297 245 202 228
-127 374 353 388 228
-128 388 246 334 360
-129 297 246 357 317
-130 374 398 399 317
-131 275 398 347 360
-132 341 357 347 295
-133 341 399 345 395
-134 275 309 345 348
-135 309 273 295 373
-136 243 273 285 395
-137 214 314 348 285
-138 314 329 351 373
-139 243 261 316 329
-140 214 313 358 316
-141 276 211 376 339
-142 291 337 261 339
-143 264 311 202 291
-144 276 311 312 379
-145 242 334 379 337
-146 242 234 202 240
-147 374 234 312 272
-148 334 272 306 361
-149 357 371 240 306
-150 374 232 371 284
-151 275 290 284 361
-152 279 290 357 296
-153 232 305 296 395
-154 275 225 204 305
-155 279 378 225 373
-156 222 378 280 395
-157 222 214 302 204
-158 211 300 302 373
-159 209 300 280 261
-160 209 264 376 214
-161 319 211 255 205
-162 389 292 205 337
-163 264 210 389 324
-164 210 255 312 318
-165 304 337 218 318
-166 323 324 304 240
-167 375 355 312 323
-168 355 283 218 361
-169 377 238 283 240
-170 232 375 377 213
-171 213 235 207 361
-172 235 279 215 238
-173 232 335 215 380
-174 204 380 207 340
-175 201 279 293 340
-176 201 280 335 219
-177 322 204 216 219
-178 211 322 301 293
-179 288 301 280 292
-180 264 319 288 216
-181 255 387 267 248
-182 308 387 292 369
-183 308 324 282 392
-184 287 244 255 282
-185 244 245 369 218
-186 245 344 268 324
-187 287 375 344 388
-188 321 388 400 218
-189 321 268 238 317
-190 375 299 262 317
-191 400 347 207 262
-192 257 347 238 328
-193 299 345 335 328
-194 345 367 370 207
-195 257 367 293 273
-196 286 335 327 273
-197 314 216 370 327
-198 397 248 314 293
-199 286 397 292 316
-200 267 216 392 316
-201 176 25 26 175
-202 143 123 146 126
-203 34 35 94 95
-204 154 177 157 174
-205 161 162 31 32
-206 111 91 114 94
-207 191 171 194 174
-208 115 95 118 98
-209 99 100 159 160
-210 33 34 163 164
-211 178 158 161 141
-212 77 57 80 60
-213 110 111 170 171
-214 157 137 160 140
-215 112 113 172 173
-216 177 200 180 197
-217 45 68 48 65
-218 165 188 168 185
-219 176 177 116 117
-220 22 45 25 42
-221 78 81 61 98
-222 156 157 6 7
-223 36 37 96 97
-224 88 105 85 108
-225 154 155 4 5
-226 79 59 62 42
-227 33 13 36 16
-228 66 67 126 127
-229 122 102 125 105
-230 99 102 82 119
-231 71 51 74 54
-232 170 150 173 153
-233 22 23 82 83
-234 146 147 16 17
-235 22 171 172 21
-236 15 16 75 76
-237 101 102 41 42
-238 189 169 192 172
-239 11 12 71 72
-240 166 146 169 149
-241 55 78 58 75
-242 145 146 85 86
-243 136 116 139 119
-244 55 184 185 54
-245 125 126 185 186
-246 68 69 128 129
-247 66 89 69 86
-248 11 198 181 8
-249 92 72 95 75
-250 82 62 85 65
-251 101 81 104 84
-252 44 103 104 43
-253 1 24 4 21
-254 58 38 41 21
-255 181 161 184 164
-256 26 27 86 87
-257 2 5 192 195
-258 77 78 17 18
-259 67 68 7 8
-260 33 50 30 53
-261 122 159 139 142
-262 190 191 60 41
-263 3 4 63 64
-264 143 180 160 163
-265 99 79 96 76
-266 111 112 51 52
-267 200 181 50 51
-268 189 16 19 186
-269 90 70 93 73
-270 24 25 84 85
-271 88 68 91 71
-272 88 147 148 87
-273 135 136 195 196
-274 23 3 26 6
-275 154 134 151 131
-276 121 144 124 141
-277 1 2 61 62
-278 47 48 107 108
-279 155 172 152 175
-280 176 156 179 159
-281 124 125 64 65
-282 123 124 183 184
-283 168 169 108 109
-284 1 150 151 20
-285 77 136 137 76
-286 199 6 9 196
-287 187 14 17 184
-288 179 180 29 30
-289 44 61 41 64
-290 91 92 151 152
-291 143 12 13 142
-292 199 179 182 162
-293 198 178 195 175
-294 34 57 37 54
-295 132 112 135 115
-296 2 3 152 153
-297 126 106 129 109
-298 56 73 53 76
-299 3 190 193 20
-300 158 159 8 9
-301 178 179 118 119
-302 157 158 97 98
-303 56 36 59 39
-304 165 166 35 36
-305 154 93 94 153
-306 148 149 18 19
-307 67 84 64 87
-308 182 183 52 53
-309 134 135 74 75
-310 55 35 52 32
-311 143 144 83 84
-312 144 167 147 164
-313 123 103 140 120
-314 198 137 138 197
-315 110 49 50 109
-316 199 200 139 140
-317 189 190 129 130
-318 165 104 105 164
-319 101 180 161 120
-320 113 93 116 96
-321 188 189 58 59
-322 177 178 27 28
-323 166 167 106 107
-324 166 183 163 186
-325 37 17 40 20
-326 100 81 40 21
-327 46 47 196 197
-328 192 193 42 43
-329 78 79 138 139
-330 99 38 39 98
-331 67 47 70 50
-332 12 29 9 32
-333 35 15 38 18
-334 145 125 148 128
-335 176 193 173 196
-336 13 14 73 74
-337 165 145 162 142
-338 100 117 97 120
-339 81 82 141 142
-340 114 115 174 175
-341 132 133 72 73
-342 66 5 6 65
-343 89 112 92 109
-344 187 56 57 186
-345 133 134 193 194
-346 88 89 28 29
-347 132 191 192 131
-348 134 114 137 117
-349 69 70 9 10
-350 25 5 28 8
-351 121 101 138 118
-352 122 123 62 63
-353 124 104 127 107
-354 77 94 74 97
-355 167 168 37 38
-356 33 92 93 32
-357 132 149 129 152
-358 121 80 61 140
-359 57 58 117 118
-360 111 128 108 131
-361 168 148 171 151
-362 45 46 105 106
-363 23 60 40 43
-364 79 80 19 20
-365 48 28 51 31
-366 27 7 30 10
-367 44 45 194 195
-368 55 56 115 116
-369 12 15 182 185
-370 4 7 194 197
-371 89 90 149 150
-372 11 34 14 31
-373 155 135 158 138
-374 147 127 150 130
-375 187 167 190 170
-376 11 160 141 10
-377 169 170 39 40
-378 155 156 95 96
-379 144 145 14 15
-380 23 24 173 174
-381 110 90 107 87
-382 59 60 119 120
-383 90 91 30 31
-384 22 2 39 19
-385 100 80 83 63
-386 69 49 72 52
-387 121 122 181 182
-388 187 188 127 128
-389 102 103 162 163
-390 44 24 47 27
-391 103 83 106 86
-392 13 200 183 10
-393 66 46 63 43
-394 113 114 53 54
-395 133 156 136 153
-396 46 26 49 29
-397 198 199 48 49
-398 70 71 130 131
-399 110 133 113 130
-400 1 188 191 18
0

**************