[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 405, 5 ]. See Glossary for some
detail.
{4, 4}_< 27, 18> = PS( 45, 9; 1) = MPS( 45, 18; 1)
= PS( 9, 45; 1) = MPS( 9, 90; 1) = UG(ATD[405, 17])
= UG(ATD[405, 18]) = MG(Rmap(405, 28) { 18, 45| 18}_ 90) = DG(Rmap(405, 31) {
45, 18| 18}_ 90)
= DG(Rmap(405, 81) { 18, 90| 2}_ 45) = AT[405, 5]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | - | - | 0 | 0 |
2 | 0 | - | 1 | 0 | - | - | - | - | 1 |
3 | 0 | 44 | - | 0 | 44 | - | - | - | - |
4 | - | 0 | 0 | - | 0 | 44 | - | - | - |
5 | - | - | 1 | 0 | - | 0 | 44 | - | - |
6 | - | - | - | 1 | 0 | - | 0 | 6 | - |
7 | - | - | - | - | 1 | 0 | - | 7 | 7 |
8 | 0 | - | - | - | - | 39 | 38 | - | 1 |
9 | 0 | 44 | - | - | - | - | 38 | 44 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 1 44 | 0 | - | - | - | - | - | - | 0 |
2 | 0 | 1 44 | 0 | - | - | - | - | - | - |
3 | - | 0 | 1 44 | 0 | - | - | - | - | - |
4 | - | - | 0 | 1 44 | 0 | - | - | - | - |
5 | - | - | - | 0 | 1 44 | 0 | - | - | - |
6 | - | - | - | - | 0 | 1 44 | 0 | - | - |
7 | - | - | - | - | - | 0 | 1 44 | 0 | - |
8 | - | - | - | - | - | - | 0 | 1 44 | 36 |
9 | 0 | - | - | - | - | - | - | 9 | 1 44 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | - | 0 | - | 0 |
2 | 0 | - | 0 | - | 0 | - | - | 0 | - |
3 | - | 0 | - | 1 | - | 0 | - | - | 1 |
4 | 0 | - | 44 | - | 0 | - | 24 | - | - |
5 | - | 0 | - | 0 | - | 0 | - | 24 | - |
6 | - | - | 0 | - | 0 | - | 25 | - | 25 |
7 | 0 | - | - | 21 | - | 20 | - | 0 | - |
8 | - | 0 | - | - | 21 | - | 0 | - | 1 |
9 | 0 | - | 44 | - | - | 20 | - | 44 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | - | - | 0 | 0 |
2 | 0 | - | 1 | 0 | - | - | - | - | 1 |
3 | 0 | 44 | - | 0 | 44 | - | - | - | - |
4 | - | 0 | 0 | - | 0 | 44 | - | - | - |
5 | - | - | 1 | 0 | - | 0 | 44 | - | - |
6 | - | - | - | 1 | 0 | - | 0 | 15 | - |
7 | - | - | - | - | 1 | 0 | - | 16 | 16 |
8 | 0 | - | - | - | - | 30 | 29 | - | 1 |
9 | 0 | 44 | - | - | - | - | 29 | 44 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | - | 0 | - | 0 |
2 | 0 | - | 0 | - | 0 | - | - | 0 | - |
3 | - | 0 | - | 1 | - | 0 | - | - | 1 |
4 | 0 | - | 44 | - | 0 | - | 33 | - | - |
5 | - | 0 | - | 0 | - | 0 | - | 33 | - |
6 | - | - | 0 | - | 0 | - | 34 | - | 34 |
7 | 0 | - | - | 12 | - | 11 | - | 0 | - |
8 | - | 0 | - | - | 12 | - | 0 | - | 1 |
9 | 0 | - | 44 | - | - | 11 | - | 44 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 1 | - | - | - | - | - | - | 0 44 |
2 | 0 44 | - | 0 1 | - | - | - | - | - | - |
3 | - | 0 44 | - | 0 1 | - | - | - | - | - |
4 | - | - | 0 44 | - | 0 1 | - | - | - | - |
5 | - | - | - | 0 44 | - | 0 1 | - | - | - |
6 | - | - | - | - | 0 44 | - | 0 1 | - | - |
7 | - | - | - | - | - | 0 44 | - | 0 1 | - |
8 | - | - | - | - | - | - | 0 44 | - | 18 19 |
9 | 0 1 | - | - | - | - | - | - | 26 27 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 10 | - | - | - | - | - | - | 0 35 |
2 | 0 35 | - | 0 10 | - | - | - | - | - | - |
3 | - | 0 35 | - | 0 10 | - | - | - | - | - |
4 | - | - | 0 35 | - | 0 10 | - | - | - | - |
5 | - | - | - | 0 35 | - | 0 10 | - | - | - |
6 | - | - | - | - | 0 35 | - | 0 10 | - | - |
7 | - | - | - | - | - | 0 35 | - | 0 10 | - |
8 | - | - | - | - | - | - | 0 35 | - | 1 36 |
9 | 0 10 | - | - | - | - | - | - | 9 44 | - |