[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 408, 11 ]. See Glossary for some
detail.
PS( 24, 17; 2) = PS( 24, 17; 8) = PS( 24, 34; 9)
= PS( 24, 34; 15) = MPS( 12, 34; 9) = MPS( 12, 34; 15)
= UG(ATD[408, 1]) = UG(ATD[408, 2]) = MG(Cmap(408, 27) { 24, 24| 12}_ 34)
= MG(Cmap(408, 28) { 24, 24| 12}_ 34) = MG(Cmap(408, 29) { 24, 24| 12}_ 34) =
MG(Cmap(408, 30) { 24, 24| 12}_ 34)
= DG(Cmap(204, 7) { 24, 24| 12}_ 34) = DG(Cmap(204, 8) { 24, 24| 12}_ 34) =
DG(Cmap(204, 9) { 24, 24| 12}_ 34)
= DG(Cmap(204, 10) { 24, 24| 12}_ 34) = HT[408, 1]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | - | - | - | - | 0 | 0 | - | - | - | - | - | - | 0 |
2 | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | 1 | - | 1 23 |
3 | - | - | - | - | - | - | - | 0 | 0 | - | - | - | 0 | - | 0 | - | - |
4 | - | - | - | - | - | - | - | - | - | - | 0 | - | 0 | - | - | 0 | 22 |
5 | - | - | - | - | - | - | 0 | 0 | 2 | - | 0 | - | - | - | - | - | - |
6 | - | - | - | - | - | - | 2 | - | 2 | - | - | - | - | - | 22 | 0 | - |
7 | - | - | - | - | 0 | 22 | 1 23 | - | - | - | - | - | - | - | - | - | - |
8 | - | - | 0 | - | 0 | - | - | - | - | - | - | - | - | 23 | 21 | - | - |
9 | 0 | - | 0 | - | 22 | 22 | - | - | - | - | - | - | - | - | - | - | - |
10 | 0 | - | - | - | - | - | - | - | - | - | - | - | 21 | 23 | - | 1 | - |
11 | - | - | - | 0 | 0 | - | - | - | - | - | - | - | - | 3 | - | 3 | - |
12 | - | - | - | - | - | - | - | - | - | - | - | 1 23 | 22 | 2 | - | - | - |
13 | - | - | 0 | 0 | - | - | - | - | - | 3 | - | 2 | - | - | - | - | - |
14 | - | - | - | - | - | - | - | 1 | - | 1 | 21 | 22 | - | - | - | - | - |
15 | - | 23 | 0 | - | - | 2 | - | 3 | - | - | - | - | - | - | - | - | - |
16 | - | - | - | 0 | - | 0 | - | - | - | 23 | 21 | - | - | - | - | - | - |
17 | 0 | 1 23 | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | - | - | - | - | 0 | 0 | - | - | - | - | - | - | 0 |
2 | 0 | 1 23 | - | 23 | - | - | - | - | - | - | - | - | - | - | - | - | - |
3 | - | - | - | 0 | - | 0 | - | - | - | 0 | 0 | - | - | - | - | - | - |
4 | - | 1 | 0 | - | - | 23 | - | 23 | - | - | - | - | - | - | - | - | - |
5 | - | - | - | - | - | - | - | 0 | - | 22 | 0 | 0 | - | - | - | - | - |
6 | - | - | 0 | 1 | - | - | - | - | - | 21 | - | 21 | - | - | - | - | - |
7 | - | - | - | - | - | - | - | - | - | - | - | 0 22 | 0 | 0 | - | - | - |
8 | - | - | - | 1 | 0 | - | - | - | - | - | - | - | - | 23 | - | 23 | - |
9 | 0 | - | - | - | - | - | - | - | - | - | - | - | 1 | 3 | - | 1 | - |
10 | 0 | - | 0 | - | 2 | 3 | - | - | - | - | - | - | - | - | - | - | - |
11 | - | - | 0 | - | 0 | - | - | - | - | - | - | - | - | 3 | 1 | - | - |
12 | - | - | - | - | 0 | 3 | 0 2 | - | - | - | - | - | - | - | - | - | - |
13 | - | - | - | - | - | - | 0 | - | 23 | - | - | - | - | - | 1 | 3 | - |
14 | - | - | - | - | - | - | 0 | 1 | 21 | - | 21 | - | - | - | - | - | - |
15 | - | - | - | - | - | - | - | - | - | - | 23 | - | 23 | - | - | 3 | 3 |
16 | - | - | - | - | - | - | - | 1 | 23 | - | - | - | 21 | - | 21 | - | - |
17 | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | 21 | - | 1 23 |
1 | 2 | 3 | 4 | |
---|---|---|---|---|
1 | - | 0 24 | - | 0 90 |
2 | 0 78 | - | 36 90 | - |
3 | - | 12 66 | - | 1 7 |
4 | 0 12 | - | 95 101 | - |