C4graphConstructions for C4[ 416, 25 ] = PL(MSY(4,52,25,0))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 416, 25 ]. See Glossary for some detail.

PL(MSY( 4, 52, 25, 0)) = PL(MSY( 4, 52, 27, 0)) = PL(MC3( 4, 52, 1, 51, 25, 0, 1), [4^52, 52^4])

      = PL(MC3( 4, 52, 1, 51, 27, 0, 1), [4^52, 52^4]) = PL(KE_ 52( 1, 27, 2, 27, 1), [4^52, 52^4]) = PL(Curtain_ 52( 1, 26, 24, 49, 50), [4^52, 52^4])

      = PL(Br( 4, 52; 25)) = PL(ATD[ 52, 3]#DCyc[ 4]) = PL(CS(W( 26, 2)[ 52^ 2], 0))

      = BGCG(W( 26, 2), C_ 4, {2, 4, 5, 7', 8'})

Cyclic coverings

mod 52:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 25 0 25 -
3 - - - - - - 0 1 0 1
4 - - - - 0 25 - - 0 25
5 0 51 - - 0 27 - - - -
6 0 51 0 27 - - - - - -
7 - 0 27 0 51 - - - - -
8 - - 0 51 0 27 - - - -

mod 52:
12345678
1 - - - - 0 1 0 51 - -
2 - - - - 28 0 0 0
3 - - - - 26 0 0 50
4 - - - - - - 0 51 24 25
5 0 51 24 26 - - - - -
6 0 1 0 0 - - - - -
7 - 0 0 0 1 - - - -
8 - 0 2 27 28 - - - -

mod 52:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - 1 0 27 28
4 - - - - 51 0 27 26
5 0 0 51 1 - - - -
6 0 0 0 0 - - - -
7 0 50 25 25 - - - -
8 0 50 24 26 - - - -

mod 52:
12345678
1 - - - - 0 1 0 27 - -
2 - - - - 0 0 0 0
3 - - - - - - 0 25 0 51
4 - - - - 49 23 25 51
5 0 51 0 - 3 - - - -
6 0 25 0 - 29 - - - -
7 - 0 0 27 27 - - - -
8 - 0 0 1 1 - - - -

mod 52:
12345678
1 - - - - 0 0 - 0 13
2 - - - - 0 0 0 39 -
3 - - - - 1 27 0 39 -
4 - - - - 1 27 - 28 41
5 0 0 51 51 - - - -
6 0 0 25 25 - - - -
7 - 0 13 0 13 - - - - -
8 0 39 - - 11 24 - - - -