C4graphGraph forms for C4 [ 420, 34 ] = PL(MC3(6,35,1,29,6,0,1),[6^35,10^21])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 420, 34 ] = PL(MC3(6,35,1,29,6,0,1),[6^35,10^21]).

(I) Following is a form readable by MAGMA:

g:=Graph<420|{ {210, 214}, {209, 223}, {202, 216}, {205, 222}, {194, 214}, {203, 222}, {199, 221}, {195, 223}, {208, 241}, {206, 236}, {200, 235}, {203, 232}, {194, 231}, {208, 245}, {195, 233}, {206, 228}, {202, 228}, {196, 235}, {200, 231}, {196, 244}, {205, 252}, {210, 231}, {201, 241}, {209, 233}, {199, 253}, {152, 217}, {166, 231}, {161, 226}, {173, 232}, {188, 249}, {171, 236}, {187, 241}, {144, 219}, {183, 252}, {165, 233}, {172, 224}, {166, 235}, {189, 240}, {175, 226}, {170, 228}, {187, 245}, {172, 252}, {135, 213}, {175, 253}, {168, 251}, {179, 230}, {142, 216}, {186, 236}, {138, 221}, {169, 241}, {164, 253}, {161, 253}, {189, 225}, {180, 232}, {168, 245}, {186, 228}, {128, 223}, {143, 239}, {151, 246}, {180, 213}, {150, 244}, {188, 216}, {183, 222}, {138, 230}, {151, 251}, {158, 240}, {179, 221}, {135, 232}, {143, 224}, {152, 247}, {167, 214}, {170, 216}, {173, 222}, {142, 249}, {164, 221}, {163, 223}, {165, 217}, {150, 235}, {144, 238}, {158, 225}, {121, 249}, {117, 244}, {94, 220}, {114, 240}, {119, 245}, {84, 215}, {109, 238}, {93, 218}, {123, 252}, {115, 248}, {117, 254}, {119, 251}, {106, 229}, {112, 225}, {70, 212}, {72, 218}, {100, 247}, {101, 243}, {122, 236}, {127, 229}, {101, 254}, {123, 224}, {111, 242}, {116, 233}, {67, 220}, {118, 214}, {65, 226}, {121, 218}, {115, 215}, {94, 248}, {66, 229}, {92, 251}, {127, 215}, {92, 246}, {84, 248}, {116, 217}, {79, 225}, {114, 220}, {65, 238}, {70, 246}, {93, 237}, {69, 244}, {72, 249}, {77, 255}, {67, 240}, {68, 247}, {109, 219}, {88, 239}, {88, 224}, {69, 254}, {100, 217}, {106, 215}, {68, 250}, {50, 243}, {22, 212}, {46, 237}, {59, 248}, {17, 213}, {52, 242}, {41, 238}, {27, 211}, {30, 213}, {41, 226}, {33, 234}, {50, 254}, {29, 211}, {52, 250}, {42, 229}, {61, 242}, {51, 227}, {33, 243}, {34, 246}, {32, 247}, {11, 211}, {38, 255}, {32, 250}, {26, 250}, {2, 227}, {11, 234}, {1, 227}, {13, 239}, {14, 234}, {63, 219}, {51, 212}, {59, 220}, {5, 237}, {26, 242}, {7, 239}, {62, 211}, {3, 237}, {27, 234}, {18, 230}, {46, 218}, {22, 227}, {34, 212}, {31, 230}, {39, 219}, {2, 255}, {14, 243}, {1, 255}, {105, 361}, {130, 386}, {3, 258}, {154, 411}, {60, 317}, {43, 298}, {4, 261}, {142, 399}, {4, 262}, {95, 349}, {146, 400}, {149, 407}, {129, 386}, {7, 259}, {101, 353}, {127, 379}, {150, 402}, {57, 316}, {104, 365}, {150, 403}, {64, 326}, {99, 357}, {135, 385}, {1, 262}, {96, 359}, {90, 349}, {62, 313}, {39, 288}, {5, 258}, {110, 361}, {73, 321}, {86, 350}, {141, 389}, {12, 261}, {157, 404}, {83, 346}, {69, 332}, {123, 370}, {133, 396}, {10, 256}, {67, 329}, {28, 279}, {39, 300}, {134, 395}, {154, 407}, {11, 261}, {13, 259}, {6, 278}, {127, 367}, {129, 401}, {58, 299}, {99, 370}, {73, 344}, {105, 376}, {94, 332}, {159, 397}, {96, 370}, {104, 378}, {63, 300}, {93, 334}, {91, 335}, {101, 369}, {125, 361}, {148, 384}, {18, 263}, {155, 398}, {78, 347}, {76, 345}, {22, 256}, {89, 335}, {38, 304}, {104, 382}, {40, 319}, {146, 389}, {15, 279}, {31, 263}, {25, 257}, {76, 341}, {158, 391}, {145, 392}, {12, 278}, {95, 325}, {64, 347}, {100, 383}, {113, 362}, {28, 256}, {87, 331}, {37, 313}, {36, 313}, {99, 382}, {90, 327}, {86, 331}, {57, 292}, {17, 271}, {35, 317}, {107, 373}, {123, 357}, {124, 355}, {84, 372}, {130, 418}, {42, 264}, {97, 323}, {125, 351}, {37, 262}, {174, 397}, {72, 363}, {57, 282}, {45, 265}, {176, 404}, {75, 367}, {63, 282}, {97, 324}, {93, 376}, {120, 349}, {80, 374}, {183, 401}, {41, 270}, {161, 390}, {103, 320}, {28, 308}, {83, 378}, {138, 419}, {74, 352}, {113, 347}, {187, 407}, {168, 389}, {191, 402}, {186, 404}, {46, 257}, {110, 321}, {112, 351}, {53, 261}, {75, 379}, {102, 340}, {73, 378}, {107, 344}, {84, 352}, {161, 405}, {17, 292}, {183, 386}, {12, 314}, {94, 360}, {57, 271}, {17, 295}, {105, 351}, {110, 344}, {124, 330}, {30, 297}, {172, 411}, {113, 326}, {119, 335}, {168, 400}, {30, 295}, {83, 362}, {72, 369}, {70, 383}, {61, 260}, {43, 274}, {39, 286}, {53, 271}, {15, 308}, {172, 407}, {81, 362}, {6, 314}, {64, 380}, {56, 260}, {108, 336}, {60, 257}, {97, 348}, {89, 356}, {80, 365}, {120, 325}, {74, 372}, {181, 395}, {116, 331}, {191, 384}, {176, 399}, {49, 369}, {114, 306}, {9, 328}, {10, 328}, {194, 384}, {77, 271}, {44, 360}, {98, 294}, {52, 368}, {108, 296}, {56, 381}, {79, 266}, {110, 299}, {112, 309}, {34, 356}, {195, 389}, {36, 355}, {87, 272}, {42, 365}, {103, 288}, {109, 298}, {28, 340}, {199, 399}, {82, 282}, {78, 262}, {120, 304}, {85, 284}, {193, 392}, {120, 305}, {7, 333}, {202, 384}, {91, 273}, {78, 260}, {66, 264}, {51, 377}, {36, 366}, {3, 328}, {98, 297}, {95, 276}, {85, 286}, {82, 281}, {62, 373}, {24, 340}, {69, 265}, {19, 350}, {47, 353}, {97, 303}, {76, 258}, {55, 377}, {54, 376}, {103, 297}, {12, 348}, {47, 383}, {37, 373}, {67, 274}, {98, 307}, {90, 267}, {34, 368}, {45, 383}, {27, 328}, {199, 404}, {61, 366}, {106, 313}, {25, 333}, {40, 380}, {107, 319}, {16, 325}, {118, 289}, {24, 320}, {202, 402}, {58, 354}, {52, 364}, {19, 330}, {65, 280}, {118, 303}, {23, 333}, {81, 267}, {76, 278}, {49, 363}, {114, 296}, {35, 376}, {18, 334}, {42, 374}, {113, 301}, {122, 294}, {40, 373}, {29, 323}, {61, 355}, {47, 369}, {30, 320}, {7, 359}, {44, 332}, {8, 360}, {126, 286}, {14, 367}, {87, 310}, {45, 332}, {31, 382}, {3, 353}, {55, 341}, {43, 329}, {108, 270}, {56, 347}, {107, 264}, {122, 281}, {20, 368}, {86, 306}, {116, 272}, {21, 368}, {14, 360}, {63, 345}, {38, 320}, {29, 379}, {102, 256}, {119, 273}, {8, 367}, {85, 306}, {4, 364}, {82, 314}, {126, 278}, {53, 348}, {60, 341}, {103, 270}, {32, 330}, {125, 279}, {10, 353}, {16, 379}, {111, 260}, {27, 375}, {48, 348}, {112, 284}, {1, 364}, {79, 290}, {16, 381}, {23, 377}, {82, 316}, {55, 345}, {122, 276}, {24, 375}, {60, 339}, {18, 354}, {35, 339}, {6, 375}, {21, 356}, {38, 340}, {88, 299}, {9, 381}, {58, 334}, {48, 324}, {85, 288}, {15, 377}, {98, 276}, {71, 305}, {71, 304}, {20, 364}, {54, 334}, {102, 286}, {41, 336}, {79, 309}, {90, 289}, {81, 301}, {126, 258}, {56, 325}, {80, 301}, {77, 304}, {65, 316}, {62, 323}, {118, 267}, {9, 375}, {86, 296}, {51, 333}, {32, 350}, {25, 359}, {125, 259}, {2, 381}, {157, 285}, {31, 414}, {139, 265}, {208, 338}, {137, 266}, {184, 315}, {153, 285}, {198, 322}, {19, 406}, {171, 302}, {157, 280}, {26, 415}, {15, 393}, {190, 312}, {178, 308}, {147, 277}, {25, 414}, {198, 321}, {193, 326}, {6, 398}, {167, 303}, {20, 413}, {22, 412}, {200, 322}, {169, 291}, {132, 270}, {177, 317}, {133, 264}, {23, 409}, {207, 321}, {201, 327}, {133, 267}, {149, 283}, {21, 410}, {185, 310}, {177, 318}, {165, 298}, {155, 276}, {20, 388}, {198, 342}, {178, 290}, {49, 417}, {13, 412}, {29, 396}, {11, 409}, {136, 282}, {141, 287}, {128, 275}, {182, 293}, {139, 287}, {163, 311}, {134, 275}, {197, 336}, {196, 337}, {178, 295}, {159, 266}, {10, 412}, {50, 420}, {24, 398}, {8, 415}, {54, 417}, {19, 388}, {58, 418}, {190, 294}, {167, 319}, {148, 269}, {184, 289}, {149, 268}, {136, 274}, {185, 291}, {165, 318}, {5, 409}, {160, 316}, {16, 396}, {145, 269}, {4, 409}, {177, 300}, {166, 315}, {132, 281}, {159, 257}, {206, 336}, {131, 284}, {140, 275}, {147, 307}, {187, 283}, {178, 274}, {5, 420}, {139, 298}, {2, 416}, {189, 287}, {186, 280}, {147, 305}, {40, 395}, {197, 358}, {131, 295}, {174, 266}, {169, 269}, {132, 288}, {33, 388}, {162, 263}, {128, 293}, {170, 268}, {182, 272}, {181, 275}, {138, 301}, {8, 416}, {206, 358}, {185, 273}, {158, 310}, {50, 410}, {48, 408}, {43, 387}, {9, 416}, {35, 394}, {140, 293}, {49, 411}, {182, 284}, {54, 412}, {136, 290}, {137, 290}, {156, 311}, {13, 417}, {59, 406}, {174, 259}, {134, 299}, {145, 319}, {44, 387}, {196, 363}, {135, 296}, {46, 414}, {173, 285}, {47, 415}, {21, 420}, {131, 306}, {171, 281}, {190, 268}, {181, 263}, {23, 420}, {155, 303}, {189, 265}, {139, 318}, {208, 357}, {141, 312}, {141, 315}, {128, 311}, {153, 302}, {131, 308}, {137, 318}, {148, 291}, {48, 392}, {160, 280}, {36, 413}, {205, 372}, {174, 279}, {166, 287}, {44, 405}, {26, 416}, {147, 297}, {148, 302}, {205, 374}, {33, 413}, {169, 277}, {53, 393}, {37, 408}, {153, 292}, {45, 400}, {55, 393}, {132, 314}, {59, 388}, {66, 386}, {209, 273}, {160, 352}, {156, 349}, {164, 358}, {146, 337}, {73, 397}, {176, 372}, {77, 393}, {149, 337}, {176, 374}, {68, 387}, {92, 411}, {145, 342}, {91, 403}, {162, 362}, {91, 402}, {159, 341}, {64, 395}, {74, 390}, {193, 269}, {175, 355}, {111, 419}, {75, 390}, {140, 322}, {144, 350}, {71, 392}, {188, 371}, {179, 380}, {157, 338}, {89, 406}, {87, 391}, {203, 283}, {68, 405}, {95, 398}, {136, 345}, {180, 352}, {192, 277}, {78, 408}, {152, 335}, {164, 371}, {155, 323}, {70, 415}, {140, 342}, {191, 357}, {156, 326}, {144, 331}, {156, 327}, {201, 277}, {204, 272}, {81, 396}, {192, 285}, {179, 366}, {153, 324}, {133, 344}, {83, 397}, {210, 268}, {197, 283}, {188, 354}, {89, 391}, {137, 343}, {71, 408}, {74, 405}, {66, 418}, {204, 300}, {115, 401}, {184, 346}, {143, 365}, {105, 394}, {117, 406}, {121, 410}, {192, 292}, {151, 370}, {175, 330}, {177, 343}, {181, 339}, {129, 358}, {75, 419}, {111, 390}, {204, 293}, {182, 351}, {160, 329}, {154, 371}, {121, 403}, {99, 399}, {194, 302}, {102, 394}, {130, 366}, {108, 385}, {191, 338}, {124, 401}, {109, 387}, {207, 289}, {134, 361}, {184, 343}, {171, 324}, {142, 382}, {151, 359}, {162, 339}, {204, 317}, {201, 312}, {192, 305}, {167, 342}, {115, 385}, {209, 291}, {117, 391}, {129, 371}, {80, 419}, {198, 309}, {96, 403}, {100, 400}, {210, 294}, {207, 315}, {163, 343}, {126, 394}, {143, 378}, {104, 414}, {197, 307}, {193, 311}, {106, 413}, {154, 354}, {203, 307}, {162, 346}, {146, 363}, {190, 327}, {163, 346}, {88, 418}, {207, 309}, {96, 410}, {170, 337}, {195, 312}, {185, 322}, {152, 356}, {92, 417}, {180, 329}, {124, 385}, {130, 380}, {200, 310}, {173, 338} }>;

(II) A more general form is to represent the graph as the orbit of {210, 214} under the group generated by the following permutations:

a: (2, 4)(3, 14)(5, 8)(6, 29)(7, 32)(9, 11)(10, 33)(12, 16)(13, 19)(15, 61)(17, 64)(18, 67)(20, 22)(21, 70)(23, 26)(24, 62)(25, 68)(28, 36)(30, 40)(31, 43)(35, 84)(37, 38)(39, 42)(41, 73)(44, 46)(45, 121)(47, 50)(48, 120)(49, 117)(51, 52)(53, 56)(54, 59)(55, 111)(57, 113)(58, 114)(60, 74)(63, 80)(65, 83)(66, 85)(69, 72)(75, 76)(77, 78)(79, 164)(81, 82)(86, 88)(87, 172)(89, 92)(90, 171)(91, 168)(93, 94)(95, 97)(96, 100)(98, 167)(99, 165)(102, 106)(103, 107)(104, 109)(105, 115)(108, 110)(112, 129)(116, 123)(118, 122)(124, 125)(126, 127)(128, 173)(130, 131)(132, 133)(134, 135)(136, 138)(137, 199)(139, 142)(140, 203)(141, 202)(143, 144)(145, 147)(146, 150)(148, 201)(149, 200)(151, 152)(153, 156)(154, 158)(157, 163)(159, 161)(160, 162)(166, 170)(174, 175)(176, 177)(178, 179)(180, 181)(182, 183)(184, 186)(185, 187)(188, 189)(190, 194)(191, 195)(192, 193)(197, 198)(204, 205)(206, 207)(208, 209)(211, 375)(212, 368)(213, 395)(214, 294)(215, 394)(216, 287)(217, 370)(218, 332)(219, 365)(220, 334)(221, 290)(222, 293)(223, 338)(224, 331)(225, 371)(226, 397)(227, 364)(228, 315)(229, 286)(230, 274)(231, 268)(232, 275)(233, 357)(234, 328)(235, 337)(236, 289)(237, 360)(238, 378)(239, 350)(240, 354)(241, 291)(242, 377)(243, 353)(244, 363)(245, 273)(246, 356)(247, 359)(248, 376)(249, 265)(250, 333)(251, 335)(252, 272)(253, 266)(254, 369)(255, 262)(256, 413)(257, 405)(258, 367)(259, 330)(260, 393)(261, 381)(263, 329)(264, 288)(267, 281)(269, 277)(270, 344)(271, 347)(276, 303)(278, 379)(279, 355)(280, 346)(282, 301)(283, 322)(284, 386)(285, 311)(292, 326)(295, 380)(296, 299)(297, 319)(298, 382)(300, 374)(302, 327)(304, 408)(305, 392)(306, 418)(307, 342)(308, 366)(309, 358)(310, 407)(312, 384)(313, 340)(314, 396)(316, 362)(317, 372)(318, 399)(320, 373)(321, 336)(323, 398)(324, 349)(325, 348)(339, 352)(341, 390)(343, 404)(345, 419)(351, 401)(361, 385)(383, 410)(387, 414)(388, 412)(389, 402)(391, 411)(400, 403)(406, 417)(409, 416)(415, 420)
b: (1, 2)(3, 5)(4, 9)(6, 12)(7, 13)(8, 20)(10, 23)(11, 27)(14, 33)(15, 28)(16, 37)(17, 30)(18, 31)(19, 44)(21, 47)(22, 51)(24, 53)(25, 54)(26, 52)(29, 62)(32, 68)(34, 70)(35, 60)(36, 75)(38, 77)(39, 63)(40, 81)(41, 65)(42, 66)(43, 86)(45, 89)(46, 93)(48, 95)(49, 96)(50, 101)(55, 102)(56, 78)(57, 103)(58, 104)(59, 94)(61, 111)(64, 113)(67, 114)(69, 117)(71, 120)(72, 121)(73, 110)(74, 124)(76, 126)(79, 112)(80, 130)(82, 132)(83, 134)(84, 115)(85, 136)(87, 139)(88, 143)(90, 145)(91, 146)(92, 151)(97, 155)(98, 153)(99, 154)(100, 152)(105, 159)(106, 127)(107, 133)(108, 160)(109, 144)(116, 165)(118, 167)(119, 168)(122, 171)(123, 172)(125, 174)(128, 163)(129, 176)(131, 178)(135, 180)(137, 182)(138, 179)(140, 184)(141, 185)(142, 188)(147, 192)(148, 190)(149, 191)(150, 196)(156, 193)(157, 197)(158, 189)(161, 175)(162, 181)(164, 199)(166, 200)(169, 201)(170, 202)(173, 203)(177, 204)(183, 205)(186, 206)(187, 208)(194, 210)(195, 209)(198, 207)(256, 377)(257, 376)(261, 375)(262, 381)(265, 391)(266, 351)(267, 319)(268, 384)(269, 327)(270, 316)(271, 320)(272, 318)(273, 389)(274, 306)(275, 346)(276, 324)(280, 336)(282, 288)(283, 338)(284, 290)(285, 307)(286, 345)(287, 310)(289, 342)(291, 312)(292, 297)(293, 343)(294, 302)(296, 329)(298, 331)(299, 378)(301, 380)(313, 379)(315, 322)(325, 408)(328, 409)(330, 405)(332, 406)(333, 412)(334, 414)(335, 400)(337, 402)(340, 393)(341, 394)(348, 398)(349, 392)(350, 387)(352, 385)(353, 420)(354, 382)(355, 390)(356, 383)(357, 407)(358, 404)(359, 417)(360, 388)(361, 397)(362, 395)(363, 403)(364, 416)(365, 418)(366, 419)(367, 413)(368, 415)(369, 410)(370, 411)(371, 399)(372, 401)(373, 396)(374, 386)
c: (1, 3)(2, 10)(4, 5)(6, 34)(7, 29)(8, 28)(9, 22)(11, 23)(12, 21)(13, 16)(14, 15)(17, 69)(18, 64)(19, 63)(20, 76)(24, 70)(25, 62)(26, 102)(27, 51)(30, 45)(31, 40)(32, 39)(33, 55)(35, 61)(36, 60)(37, 46)(38, 47)(41, 116)(42, 73)(43, 114)(44, 131)(48, 121)(49, 120)(50, 53)(52, 126)(54, 56)(57, 117)(58, 113)(59, 136)(65, 87)(66, 83)(68, 85)(71, 72)(74, 112)(75, 125)(77, 101)(78, 93)(79, 84)(80, 110)(81, 88)(82, 89)(86, 109)(90, 172)(91, 171)(92, 95)(94, 178)(96, 97)(98, 168)(99, 167)(100, 103)(104, 107)(105, 111)(106, 159)(108, 165)(115, 137)(118, 123)(119, 122)(124, 177)(127, 174)(128, 164)(129, 163)(130, 162)(132, 152)(133, 143)(134, 138)(135, 139)(140, 199)(141, 203)(142, 145)(146, 147)(148, 202)(149, 201)(150, 153)(151, 155)(154, 156)(157, 200)(158, 160)(161, 182)(166, 173)(169, 170)(175, 204)(176, 198)(179, 181)(180, 189)(183, 184)(185, 186)(187, 190)(188, 193)(191, 194)(192, 196)(195, 197)(205, 207)(206, 209)(208, 210)(211, 333)(212, 375)(213, 265)(214, 357)(215, 266)(216, 269)(217, 270)(218, 408)(219, 350)(220, 274)(221, 275)(222, 315)(223, 358)(224, 267)(225, 352)(226, 272)(227, 328)(228, 291)(229, 397)(230, 395)(231, 338)(232, 287)(233, 336)(234, 377)(235, 285)(236, 273)(237, 262)(238, 331)(239, 396)(240, 329)(241, 268)(242, 394)(243, 393)(244, 292)(245, 294)(246, 398)(247, 288)(248, 290)(249, 392)(250, 286)(251, 276)(252, 289)(253, 293)(254, 271)(255, 353)(256, 416)(257, 313)(258, 364)(259, 379)(260, 376)(261, 420)(263, 380)(264, 378)(277, 337)(278, 368)(279, 367)(280, 310)(281, 335)(282, 406)(283, 312)(284, 405)(295, 332)(296, 298)(297, 400)(299, 301)(300, 330)(302, 402)(303, 370)(304, 369)(305, 363)(306, 387)(307, 389)(308, 360)(309, 372)(311, 371)(314, 356)(316, 391)(317, 355)(318, 385)(319, 382)(320, 383)(321, 374)(322, 404)(323, 359)(324, 403)(325, 417)(326, 354)(327, 407)(334, 347)(339, 366)(340, 415)(341, 413)(342, 399)(343, 401)(344, 365)(345, 388)(346, 386)(348, 410)(349, 411)(351, 390)(361, 419)(362, 418)(373, 414)(381, 412)
d: (3, 6)(5, 12)(7, 17)(8, 16)(10, 24)(13, 30)(14, 29)(18, 41)(19, 40)(20, 37)(21, 48)(22, 38)(23, 53)(25, 57)(26, 56)(31, 65)(32, 64)(33, 62)(34, 71)(35, 39)(42, 84)(43, 83)(44, 81)(45, 90)(46, 82)(47, 95)(49, 98)(50, 97)(51, 77)(52, 78)(54, 103)(58, 108)(59, 107)(60, 63)(66, 115)(67, 73)(68, 113)(69, 118)(70, 120)(72, 122)(74, 80)(85, 105)(86, 134)(87, 140)(88, 135)(89, 145)(91, 148)(92, 147)(93, 132)(94, 133)(96, 153)(99, 157)(100, 156)(101, 155)(104, 160)(109, 162)(110, 114)(116, 128)(117, 167)(119, 169)(121, 171)(123, 173)(124, 130)(125, 131)(136, 159)(138, 161)(139, 184)(142, 186)(143, 180)(144, 181)(146, 190)(150, 194)(151, 192)(152, 193)(154, 197)(158, 198)(163, 165)(168, 201)(172, 203)(174, 178)(175, 179)(188, 206)(189, 207)(196, 210)(211, 234)(212, 304)(213, 239)(214, 244)(215, 229)(216, 228)(217, 311)(218, 281)(219, 339)(220, 344)(221, 253)(222, 252)(223, 233)(224, 232)(225, 309)(226, 230)(227, 255)(231, 235)(236, 249)(237, 314)(238, 263)(240, 321)(241, 245)(242, 260)(243, 323)(246, 305)(247, 326)(248, 264)(250, 347)(251, 277)(254, 303)(256, 340)(257, 282)(258, 278)(259, 295)(261, 409)(262, 364)(265, 289)(266, 290)(267, 332)(268, 337)(269, 335)(270, 334)(271, 333)(272, 293)(273, 291)(274, 397)(275, 331)(276, 369)(279, 308)(280, 382)(283, 407)(284, 351)(285, 370)(286, 394)(287, 315)(288, 376)(292, 359)(294, 363)(296, 299)(297, 417)(298, 346)(300, 317)(301, 405)(302, 403)(306, 361)(307, 411)(310, 322)(312, 389)(313, 413)(316, 414)(318, 343)(319, 406)(320, 412)(324, 410)(325, 415)(327, 400)(328, 375)(329, 378)(330, 380)(336, 354)(338, 357)(341, 345)(342, 391)(348, 420)(349, 383)(350, 395)(352, 365)(353, 398)(355, 366)(356, 392)(358, 371)(360, 396)(362, 387)(367, 379)(368, 408)(372, 374)(373, 388)(377, 393)(381, 416)(384, 402)(385, 418)(386, 401)(390, 419)(399, 404)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 420, 34 ]
420
-1 364 255 227 262
-2 255 227 381 416
-3 353 258 237 328
-4 364 409 261 262
-5 409 420 258 237
-6 375 398 278 314
-7 333 259 359 239
-8 367 360 415 416
-9 375 381 328 416
-10 353 256 412 328
-11 211 409 234 261
-12 278 314 348 261
-13 412 259 239 417
-14 243 234 367 360
-15 308 377 279 393
-16 396 379 325 381
-17 213 292 271 295
-18 354 334 230 263
-19 330 388 350 406
-20 364 388 368 413
-21 420 410 356 368
-22 212 256 412 227
-23 409 420 333 377
-24 320 375 398 340
-25 333 257 359 414
-26 242 250 415 416
-27 375 211 234 328
-28 308 256 279 340
-29 396 211 323 379
-30 297 320 213 295
-31 414 382 230 263
-32 330 247 250 350
-33 243 234 388 413
-34 212 246 356 368
-35 376 317 339 394
-36 355 366 313 413
-37 408 313 262 373
-38 320 255 304 340
-39 286 288 300 219
-40 319 380 373 395
-41 226 270 336 238
-42 264 374 365 229
-43 298 387 274 329
-44 332 387 360 405
-45 265 332 400 383
-46 257 237 414 218
-47 353 369 415 383
-48 408 324 348 392
-49 363 411 369 417
-50 243 254 420 410
-51 212 333 377 227
-52 242 364 368 250
-53 271 348 261 393
-54 376 334 412 417
-55 341 377 345 393
-56 325 347 260 381
-57 292 271 282 316
-58 418 299 354 334
-59 220 388 248 406
-60 341 257 317 339
-61 242 355 366 260
-62 211 323 313 373
-63 300 345 282 219
-64 347 380 326 395
-65 280 226 238 316
-66 264 418 386 229
-67 220 240 274 329
-68 387 247 250 405
-69 254 265 244 332
-70 212 246 415 383
-71 408 304 392 305
-72 363 369 249 218
-73 397 321 344 378
-74 352 390 372 405
-75 419 367 379 390
-76 341 278 345 258
-77 255 271 304 393
-78 408 347 260 262
-79 309 266 290 225
-80 374 419 365 301
-81 396 267 301 362
-82 281 314 282 316
-83 397 378 346 362
-84 352 215 248 372
-85 286 288 284 306
-86 331 306 350 296
-87 331 310 391 272
-88 418 299 224 239
-89 356 335 391 406
-90 267 289 327 349
-91 335 402 403 273
-92 246 411 251 417
-93 376 334 237 218
-94 220 332 248 360
-95 276 398 325 349
-96 410 359 370 403
-97 323 324 303 348
-98 297 276 294 307
-99 399 357 370 382
-100 400 247 217 383
-101 243 254 353 369
-102 286 256 394 340
-103 297 320 288 270
-104 365 378 414 382
-105 376 361 394 351
-106 313 215 413 229
-107 264 319 344 373
-108 385 270 336 296
-109 298 387 238 219
-110 299 321 344 361
-111 242 419 390 260
-112 309 225 284 351
-113 301 347 326 362
-114 220 240 306 296
-115 385 401 215 248
-116 331 233 217 272
-117 254 244 391 406
-118 267 289 214 303
-119 245 335 251 273
-120 325 304 305 349
-121 410 249 403 218
-122 276 236 281 294
-123 224 357 370 252
-124 330 385 355 401
-125 279 259 361 351
-126 286 278 258 394
-127 367 379 215 229
-128 275 223 311 293
-129 386 401 358 371
-130 418 386 366 380
-131 308 284 295 306
-132 288 270 281 314
-133 264 396 267 344
-134 275 299 361 395
-135 385 232 213 296
-136 290 345 282 274
-137 266 343 290 318
-138 221 419 301 230
-139 265 287 298 318
-140 275 342 322 293
-141 287 312 389 315
-142 399 216 249 382
-143 365 224 378 239
-144 331 238 350 219
-145 319 342 269 392
-146 363 389 400 337
-147 297 277 305 307
-148 269 291 302 384
-149 407 268 337 283
-150 244 235 402 403
-151 246 359 370 251
-152 356 247 335 217
-153 302 324 292 285
-154 407 354 411 371
-155 276 398 323 303
-156 311 326 327 349
-157 280 338 404 285
-158 310 225 391 240
-159 341 397 266 257
-160 352 280 316 329
-161 253 390 226 405
-162 346 339 263 362
-163 343 223 311 346
-164 253 221 358 371
-165 298 233 217 318
-166 231 287 235 315
-167 319 342 214 303
-168 245 389 400 251
-169 277 269 291 241
-170 268 216 337 228
-171 236 302 324 281
-172 407 224 411 252
-173 232 222 338 285
-174 397 266 279 259
-175 253 330 355 226
-176 374 399 404 372
-177 343 300 317 318
-178 308 290 295 274
-179 221 366 380 230
-180 352 232 213 329
-181 275 339 263 395
-182 293 272 284 351
-183 386 222 401 252
-184 343 289 346 315
-185 310 322 291 273
-186 236 280 228 404
-187 407 245 283 241
-188 354 216 249 371
-189 265 287 225 240
-190 268 312 294 327
-191 357 402 338 384
-192 277 292 305 285
-193 311 269 326 392
-194 231 214 302 384
-195 233 223 312 389
-196 363 244 235 337
-197 336 358 283 307
-198 309 342 321 322
-199 253 221 399 404
-200 231 310 322 235
-201 277 312 327 241
-202 402 216 228 384
-203 232 222 283 307
-204 300 293 272 317
-205 374 222 372 252
-206 236 336 358 228
-207 309 321 289 315
-208 245 357 338 241
-209 233 223 291 273
-210 231 268 214 294
-211 11 27 29 62
-212 22 34 70 51
-213 135 180 17 30
-214 210 167 194 118
-215 115 127 84 106
-216 188 202 170 142
-217 165 100 116 152
-218 121 46 93 72
-219 144 39 63 109
-220 67 59 114 94
-221 199 179 138 164
-222 203 183 205 173
-223 209 128 195 163
-224 88 143 123 172
-225 79 112 189 158
-226 161 41 65 175
-227 22 1 2 51
-228 202 170 206 186
-229 66 127 106 42
-230 179 138 18 31
-231 166 210 200 194
-232 135 180 203 173
-233 165 209 116 195
-234 11 33 14 27
-235 166 200 150 196
-236 122 171 206 186
-237 46 3 5 93
-238 144 41 65 109
-239 88 143 13 7
-240 67 189 114 158
-241 187 201 169 208
-242 111 26 61 52
-243 33 101 14 50
-244 69 117 150 196
-245 187 168 119 208
-246 34 70 92 151
-247 100 68 152 32
-248 59 115 94 84
-249 121 188 72 142
-250 68 26 52 32
-251 168 92 151 119
-252 123 172 183 205
-253 199 161 164 175
-254 101 69 50 117
-255 77 1 2 38
-256 22 102 28 10
-257 46 25 60 159
-258 3 5 126 76
-259 13 125 7 174
-260 56 78 111 61
-261 11 12 4 53
-262 1 78 4 37
-263 181 18 162 31
-264 66 133 107 42
-265 45 189 69 139
-266 79 137 159 174
-267 133 90 81 118
-268 210 190 170 149
-269 145 169 148 193
-270 132 103 41 108
-271 77 57 17 53
-272 116 182 204 87
-273 209 91 119 185
-274 67 178 136 43
-275 134 181 128 140
-276 122 155 95 98
-277 201 147 169 192
-278 12 126 6 76
-279 15 125 28 174
-280 157 160 65 186
-281 132 122 82 171
-282 57 136 82 63
-283 187 203 149 197
-284 112 182 85 131
-285 157 192 173 153
-286 102 126 39 85
-287 166 189 139 141
-288 132 103 39 85
-289 90 118 184 207
-290 79 178 136 137
-291 209 169 148 185
-292 57 192 17 153
-293 182 204 128 140
-294 122 210 190 98
-295 178 17 30 131
-296 135 114 86 108
-297 103 147 30 98
-298 165 139 43 109
-299 88 110 134 58
-300 177 39 204 63
-301 80 113 81 138
-302 148 171 194 153
-303 155 167 118 97
-304 77 38 71 120
-305 147 71 192 120
-306 114 85 86 131
-307 147 203 98 197
-308 178 15 28 131
-309 198 79 112 207
-310 200 158 185 87
-311 156 193 128 163
-312 190 201 195 141
-313 36 37 62 106
-314 132 12 82 6
-315 166 184 141 207
-316 57 82 160 65
-317 177 35 60 204
-318 165 177 137 139
-319 145 167 40 107
-320 24 103 38 30
-321 110 198 73 207
-322 198 200 140 185
-323 155 29 62 97
-324 48 171 97 153
-325 56 16 95 120
-326 156 113 193 64
-327 90 156 190 201
-328 3 27 9 10
-329 67 180 160 43
-330 124 19 32 175
-331 144 116 86 87
-332 44 45 69 94
-333 23 25 7 51
-334 58 93 18 54
-335 89 91 119 152
-336 41 206 108 197
-337 146 170 149 196
-338 157 191 173 208
-339 35 60 181 162
-340 24 102 38 28
-341 55 60 159 76
-342 198 145 167 140
-343 177 137 184 163
-344 110 133 73 107
-345 55 136 63 76
-346 83 162 184 163
-347 56 78 113 64
-348 12 48 53 97
-349 90 156 95 120
-350 144 19 86 32
-351 112 125 105 182
-352 180 160 84 74
-353 101 3 47 10
-354 154 188 58 18
-355 36 124 61 175
-356 34 89 152 21
-357 99 123 191 208
-358 129 206 164 197
-359 25 7 96 151
-360 44 14 94 8
-361 110 134 125 105
-362 113 81 83 162
-363 146 49 72 196
-364 1 4 52 20
-365 143 80 104 42
-366 36 179 61 130
-367 14 127 8 75
-368 34 52 20 21
-369 101 47 49 72
-370 99 123 96 151
-371 154 188 129 164
-372 176 84 205 74
-373 37 40 62 107
-374 176 80 205 42
-375 24 27 6 9
-376 35 93 105 54
-377 55 23 15 51
-378 143 104 83 73
-379 16 127 29 75
-380 179 40 64 130
-381 56 2 16 9
-382 99 104 31 142
-383 45 100 47 70
-384 191 202 148 194
-385 124 135 115 108
-386 66 183 129 130
-387 44 68 43 109
-388 33 59 19 20
-389 146 168 195 141
-390 111 161 74 75
-391 89 158 117 87
-392 145 48 71 193
-393 55 77 15 53
-394 35 102 126 105
-395 134 181 40 64
-396 133 81 16 29
-397 159 83 73 174
-398 155 24 6 95
-399 99 176 199 142
-400 45 100 146 168
-401 124 115 183 129
-402 91 191 202 150
-403 121 91 150 96
-404 176 199 157 186
-405 44 68 161 74
-406 89 59 117 19
-407 154 187 149 172
-408 78 37 48 71
-409 11 23 4 5
-410 121 50 96 21
-411 154 92 49 172
-412 22 13 10 54
-413 33 36 106 20
-414 46 25 104 31
-415 47 26 70 8
-416 2 26 8 9
-417 13 92 49 54
-418 66 88 58 130
-419 111 80 138 75
-420 23 5 50 21
0

**************