C4graphGraph forms for C4 [ 420, 45 ] = UG(ATD[420,81])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 420, 45 ] = UG(ATD[420,81]).

(I) Following is a form readable by MAGMA:

g:=Graph<420|{ {86, 87}, {264, 265}, {138, 139}, {116, 117}, {244, 245}, {320, 322}, {1, 2}, {285, 286}, {149, 150}, {165, 166}, {267, 271}, {376, 380}, {2, 7}, {353, 356}, {107, 110}, {1, 6}, {337, 342}, {306, 309}, {49, 54}, {163, 164}, {215, 222}, {50, 56}, {355, 361}, {179, 185}, {3, 8}, {261, 270}, {81, 90}, {55, 59}, {4, 9}, {352, 365}, {102, 107}, {240, 253}, {181, 187}, {324, 330}, {224, 238}, {5, 10}, {305, 318}, {70, 86}, {134, 150}, {228, 244}, {46, 63}, {295, 310}, {3, 16}, {173, 190}, {206, 218}, {129, 148}, {298, 319}, {8, 30}, {35, 53}, {9, 31}, {143, 152}, {13, 21}, {267, 275}, {103, 127}, {232, 240}, {6, 28}, {135, 157}, {79, 85}, {41, 51}, {12, 22}, {7, 29}, {2, 25}, {226, 249}, {354, 382}, {136, 149}, {167, 186}, {4, 26}, {5, 27}, {143, 145}, {192, 223}, {21, 53}, {89, 120}, {277, 308}, {145, 176}, {330, 360}, {258, 289}, {276, 304}, {15, 41}, {284, 314}, {142, 168}, {81, 119}, {67, 101}, {197, 226}, {348, 379}, {321, 358}, {152, 176}, {347, 371}, {287, 311}, {203, 227}, {20, 61}, {84, 125}, {10, 32}, {333, 359}, {15, 37}, {14, 36}, {11, 33}, {272, 315}, {340, 383}, {66, 111}, {346, 375}, {199, 234}, {12, 34}, {139, 165}, {131, 173}, {13, 35}, {213, 250}, {325, 362}, {260, 299}, {259, 300}, {74, 123}, {147, 161}, {326, 372}, {73, 122}, {143, 188}, {219, 239}, {24, 45}, {327, 370}, {285, 296}, {273, 292}, {133, 176}, {64, 117}, {16, 38}, {19, 37}, {17, 39}, {146, 164}, {148, 163}, {256, 311}, {283, 291}, {349, 357}, {347, 355}, {76, 117}, {329, 368}, {80, 105}, {195, 250}, {18, 40}, {95, 101}, {19, 41}, {23, 44}, {341, 366}, {130, 185}, {68, 127}, {197, 254}, {219, 224}, {26, 38}, {321, 381}, {65, 124}, {322, 383}, {67, 126}, {220, 225}, {20, 42}, {21, 43}, {66, 125}, {149, 170}, {158, 161}, {193, 254}, {27, 91}, {316, 380}, {256, 320}, {40, 104}, {39, 103}, {38, 102}, {37, 101}, {36, 100}, {35, 99}, {34, 98}, {33, 97}, {32, 96}, {31, 95}, {30, 94}, {29, 93}, {28, 92}, {191, 255}, {9, 72}, {51, 114}, {49, 112}, {47, 110}, {45, 108}, {43, 106}, {24, 89}, {150, 215}, {167, 230}, {174, 239}, {21, 87}, {308, 374}, {304, 370}, {301, 367}, {300, 366}, {290, 352}, {54, 116}, {25, 90}, {315, 376}, {313, 378}, {59, 120}, {50, 113}, {46, 109}, {42, 105}, {16, 84}, {317, 377}, {272, 340}, {63, 123}, {18, 86}, {17, 85}, {169, 237}, {184, 252}, {33, 100}, {318, 379}, {297, 364}, {276, 337}, {262, 323}, {257, 324}, {60, 121}, {36, 97}, {277, 339}, {307, 373}, {306, 372}, {289, 359}, {288, 358}, {44, 107}, {298, 365}, {61, 122}, {52, 115}, {62, 118}, {317, 373}, {163, 235}, {175, 231}, {6, 79}, {290, 363}, {258, 331}, {28, 85}, {11, 65}, {307, 377}, {274, 344}, {166, 236}, {291, 360}, {275, 351}, {301, 353}, {14, 67}, {295, 362}, {292, 361}, {58, 119}, {56, 117}, {34, 111}, {184, 245}, {12, 66}, {267, 325}, {26, 84}, {23, 88}, {312, 375}, {57, 118}, {128, 208}, {22, 71}, {274, 323}, {268, 349}, {189, 236}, {26, 72}, {264, 346}, {261, 343}, {260, 342}, {135, 213}, {259, 336}, {269, 350}, {269, 345}, {293, 369}, {41, 124}, {285, 328}, {183, 225}, {266, 348}, {7, 80}, {283, 332}, {278, 321}, {155, 195}, {294, 382}, {8, 81}, {263, 350}, {10, 83}, {257, 347}, {9, 82}, {132, 223}, {37, 126}, {273, 333}, {128, 221}, {288, 381}, {131, 222}, {262, 344}, {302, 368}, {263, 345}, {48, 111}, {172, 243}, {175, 240}, {184, 216}, {147, 240}, {46, 74}, {305, 341}, {293, 321}, {288, 324}, {135, 227}, {134, 226}, {133, 225}, {275, 374}, {313, 348}, {316, 346}, {278, 369}, {309, 338}, {141, 229}, {30, 119}, {282, 371}, {261, 364}, {140, 229}, {148, 253}, {129, 235}, {140, 230}, {141, 230}, {308, 351}, {303, 324}, {157, 246}, {137, 228}, {40, 70}, {296, 327}, {176, 192}, {319, 335}, {266, 378}, {191, 207}, {52, 69}, {134, 247}, {155, 234}, {50, 64}, {268, 382}, {51, 65}, {62, 77}, {169, 218}, {29, 105}, {303, 347}, {264, 380}, {57, 77}, {147, 231}, {190, 202}, {130, 247}, {149, 226}, {280, 367}, {279, 352}, {181, 194}, {284, 356}, {312, 320}, {310, 334}, {55, 78}, {282, 355}, {280, 353}, {54, 76}, {287, 357}, {281, 354}, {294, 349}, {28, 96}, {314, 326}, {279, 363}, {137, 245}, {32, 92}, {148, 232}, {43, 86}, {157, 224}, {297, 343}, {311, 329}, {150, 233}, {155, 228}, {178, 205}, {27, 159}, {260, 385}, {99, 228}, {27, 147}, {116, 252}, {91, 210}, {90, 209}, {39, 171}, {127, 243}, {46, 163}, {78, 192}, {79, 193}, {45, 162}, {38, 182}, {97, 241}, {93, 205}, {40, 184}, {39, 183}, {43, 186}, {82, 195}, {45, 188}, {58, 168}, {124, 238}, {113, 227}, {87, 197}, {80, 194}, {59, 169}, {42, 185}, {52, 167}, {48, 164}, {10, 159}, {115, 230}, {95, 202}, {93, 200}, {51, 166}, {12, 153}, {118, 224}, {34, 181}, {122, 237}, {94, 201}, {83, 196}, {50, 165}, {44, 187}, {103, 255}, {110, 246}, {115, 233}, {92, 199}, {287, 388}, {281, 386}, {90, 198}, {104, 245}, {284, 387}, {122, 218}, {61, 156}, {125, 220}, {120, 217}, {83, 241}, {292, 391}, {298, 393}, {112, 212}, {289, 389}, {115, 215}, {114, 214}, {113, 213}, {97, 196}, {302, 395}, {291, 390}, {100, 193}, {54, 144}, {300, 394}, {124, 219}, {8, 160}, {103, 207}, {102, 206}, {25, 177}, {52, 158}, {7, 172}, {120, 211}, {96, 203}, {31, 180}, {59, 151}, {116, 216}, {106, 198}, {30, 179}, {121, 212}, {87, 249}, {318, 400}, {99, 205}, {98, 204}, {29, 178}, {295, 392}, {16, 160}, {47, 157}, {65, 242}, {126, 205}, {109, 217}, {315, 399}, {25, 172}, {104, 221}, {42, 156}, {312, 398}, {83, 229}, {44, 154}, {31, 168}, {60, 139}, {35, 155}, {104, 208}, {82, 234}, {67, 248}, {106, 209}, {61, 129}, {304, 396}, {108, 210}, {109, 211}, {306, 397}, {73, 136}, {88, 154}, {329, 395}, {108, 174}, {323, 384}, {350, 413}, {344, 412}, {32, 229}, {340, 401}, {339, 405}, {344, 414}, {71, 128}, {336, 407}, {73, 129}, {333, 389}, {127, 183}, {75, 130}, {109, 164}, {77, 132}, {336, 410}, {363, 417}, {339, 409}, {338, 408}, {78, 133}, {367, 420}, {327, 396}, {326, 397}, {330, 390}, {348, 400}, {343, 411}, {75, 134}, {325, 392}, {106, 167}, {76, 131}, {345, 406}, {337, 385}, {101, 180}, {369, 416}, {323, 402}, {33, 242}, {322, 401}, {331, 415}, {346, 398}, {110, 187}, {121, 175}, {123, 173}, {114, 165}, {334, 409}, {331, 403}, {332, 404}, {78, 151}, {349, 388}, {335, 406}, {98, 187}, {334, 405}, {377, 418}, {36, 248}, {88, 132}, {107, 182}, {71, 153}, {112, 175}, {341, 394}, {81, 177}, {378, 410}, {371, 403}, {112, 144}, {353, 387}, {377, 411}, {73, 170}, {108, 143}, {69, 161}, {355, 391}, {369, 404}, {88, 191}, {94, 185}, {68, 172}, {84, 189}, {373, 412}, {352, 393}, {71, 173}, {105, 130}, {373, 414}, {332, 416}, {371, 415}, {364, 384}, {335, 419}, {378, 407}, {89, 169}, {118, 135}, {76, 190}, {77, 191}, {121, 138}, {380, 399}, {91, 174}, {343, 418}, {338, 420}, {363, 413}, {367, 408}, {2, 251}, {119, 142}, {82, 168}, {345, 419}, {113, 139}, {91, 161}, {89, 162}, {123, 128}, {382, 386}, {6, 251}, {111, 146}, {85, 171}, {364, 402}, {66, 189}, {350, 417}, {146, 406}, {156, 409}, {151, 401}, {158, 408}, {144, 411}, {145, 412}, {159, 400}, {137, 409}, {159, 395}, {144, 389}, {136, 402}, {141, 401}, {145, 399}, {170, 392}, {64, 357}, {75, 365}, {137, 417}, {162, 394}, {64, 361}, {69, 366}, {48, 286}, {142, 416}, {160, 398}, {68, 370}, {170, 403}, {171, 402}, {156, 417}, {154, 420}, {58, 376}, {47, 362}, {62, 376}, {53, 381}, {79, 257}, {80, 258}, {48, 356}, {63, 359}, {93, 260}, {95, 262}, {94, 261}, {60, 354}, {92, 259}, {17, 368}, {20, 375}, {248, 411}, {18, 374}, {244, 400}, {100, 257}, {96, 263}, {23, 383}, {98, 264}, {99, 265}, {243, 408}, {247, 412}, {102, 266}, {49, 351}, {13, 354}, {14, 383}, {125, 268}, {5, 375}, {246, 388}, {251, 393}, {4, 368}, {3, 374}, {126, 265}, {247, 399}, {114, 267}, {22, 365}, {242, 398}, {15, 370}, {19, 366}, {248, 389}, {244, 395}, {246, 393}, {251, 388}, {198, 326}, {199, 327}, {200, 328}, {201, 329}, {202, 330}, {203, 331}, {204, 332}, {206, 333}, {3, 390}, {4, 385}, {5, 387}, {179, 309}, {186, 316}, {132, 270}, {133, 271}, {11, 384}, {19, 415}, {24, 404}, {182, 314}, {220, 336}, {180, 313}, {131, 269}, {17, 385}, {22, 391}, {15, 413}, {13, 414}, {188, 303}, {18, 390}, {138, 286}, {1, 404}, {49, 420}, {20, 387}, {214, 335}, {243, 360}, {11, 407}, {63, 416}, {209, 334}, {182, 278}, {178, 275}, {180, 277}, {55, 405}, {60, 414}, {1, 418}, {57, 410}, {53, 406}, {177, 274}, {47, 394}, {179, 276}, {253, 340}, {177, 282}, {254, 341}, {14, 419}, {56, 405}, {186, 279}, {189, 272}, {23, 419}, {57, 397}, {56, 396}, {166, 272}, {181, 258}, {58, 386}, {183, 271}, {190, 262}, {250, 322}, {232, 337}, {249, 320}, {24, 418}, {242, 328}, {55, 396}, {62, 386}, {188, 256}, {239, 339}, {236, 338}, {174, 273}, {72, 392}, {254, 318}, {231, 293}, {255, 317}, {250, 312}, {217, 282}, {238, 301}, {211, 279}, {223, 283}, {241, 309}, {154, 351}, {204, 265}, {70, 384}, {237, 299}, {252, 314}, {253, 315}, {74, 397}, {201, 270}, {222, 281}, {162, 362}, {219, 273}, {217, 274}, {75, 391}, {152, 342}, {192, 270}, {249, 311}, {255, 305}, {153, 342}, {74, 410}, {218, 266}, {233, 313}, {70, 407}, {231, 310}, {237, 319}, {212, 256}, {200, 286}, {201, 287}, {235, 317}, {232, 304}, {68, 413}, {193, 280}, {214, 271}, {69, 415}, {198, 284}, {199, 285}, {215, 269}, {235, 305}, {72, 403}, {194, 281}, {239, 308}, {197, 280}, {238, 307}, {236, 306}, {171, 372}, {196, 283}, {153, 379}, {152, 379}, {200, 299}, {227, 263}, {140, 361}, {241, 276}, {196, 290}, {216, 319}, {160, 328}, {140, 357}, {142, 359}, {234, 259}, {195, 297}, {202, 288}, {203, 289}, {206, 292}, {207, 293}, {252, 278}, {141, 358}, {194, 302}, {225, 268}, {138, 356}, {221, 307}, {146, 381}, {204, 291}, {211, 316}, {220, 300}, {221, 301}, {222, 302}, {151, 358}, {216, 299}, {210, 294}, {158, 360}, {208, 294}, {209, 295}, {178, 325}, {208, 296}, {207, 310}, {210, 296}, {212, 303}, {136, 372}, {213, 297}, {214, 298}, {233, 277}, {223, 290} }>;

(II) A more general form is to represent the graph as the orbit of {86, 87} under the group generated by the following permutations:

a: (2, 418)(3, 11)(4, 74)(5, 53)(6, 404)(7, 377)(8, 384)(9, 397)(10, 381)(12, 379)(13, 20)(14, 158)(15, 49)(16, 407)(17, 63)(18, 242)(19, 154)(21, 375)(22, 152)(23, 69)(24, 251)(25, 343)(26, 410)(27, 406)(28, 369)(29, 307)(30, 323)(31, 306)(32, 321)(33, 390)(34, 318)(35, 387)(36, 360)(37, 420)(38, 336)(39, 359)(40, 328)(41, 351)(42, 414)(43, 312)(44, 366)(45, 393)(46, 368)(48, 244)(50, 405)(51, 308)(52, 383)(54, 370)(55, 64)(57, 72)(58, 136)(59, 357)(60, 156)(61, 354)(62, 170)(65, 374)(66, 348)(67, 408)(68, 144)(70, 160)(71, 342)(73, 386)(75, 145)(76, 304)(77, 403)(78, 361)(79, 332)(80, 317)(81, 364)(82, 326)(83, 288)(84, 378)(85, 416)(86, 398)(87, 346)(88, 415)(89, 388)(90, 297)(91, 335)(92, 278)(93, 221)(94, 274)(95, 309)(96, 293)(97, 330)(98, 254)(99, 353)(100, 291)(101, 338)(102, 220)(103, 289)(104, 200)(105, 373)(106, 250)(107, 300)(108, 298)(109, 329)(110, 394)(111, 400)(112, 413)(113, 334)(114, 239)(115, 340)(116, 327)(117, 396)(118, 392)(119, 402)(120, 287)(121, 417)(122, 382)(123, 385)(124, 275)(125, 266)(126, 367)(127, 389)(128, 260)(129, 281)(130, 412)(131, 232)(132, 371)(133, 292)(134, 399)(135, 295)(137, 138)(139, 409)(140, 151)(142, 171)(143, 365)(146, 159)(147, 345)(148, 222)(149, 376)(150, 315)(155, 284)(157, 362)(161, 419)(162, 246)(163, 302)(164, 395)(165, 339)(166, 277)(167, 322)(168, 372)(169, 349)(172, 411)(173, 337)(174, 214)(175, 350)(176, 391)(177, 261)(178, 238)(179, 262)(180, 236)(181, 305)(182, 259)(183, 333)(184, 285)(185, 344)(186, 320)(187, 341)(188, 352)(189, 313)(190, 276)(191, 331)(192, 355)(193, 204)(194, 235)(195, 198)(196, 324)(197, 264)(199, 252)(201, 217)(202, 241)(203, 207)(205, 301)(206, 225)(208, 299)(209, 213)(210, 319)(211, 311)(212, 363)(215, 253)(216, 296)(218, 268)(219, 267)(223, 347)(224, 325)(226, 380)(227, 310)(228, 356)(229, 358)(230, 401)(231, 263)(233, 272)(234, 314)(237, 294)(240, 269)(243, 248)(245, 286)(249, 316)(255, 258)(256, 279)(257, 283)(265, 280)(270, 282)(271, 273)(290, 303)
b: (2, 6)(3, 11)(4, 15)(5, 20)(7, 28)(8, 33)(9, 37)(10, 42)(12, 50)(13, 53)(14, 58)(16, 65)(17, 68)(18, 70)(19, 72)(22, 64)(23, 62)(25, 79)(26, 41)(27, 61)(29, 92)(30, 97)(31, 101)(32, 105)(34, 113)(36, 119)(38, 124)(39, 127)(43, 87)(44, 118)(45, 89)(46, 112)(48, 138)(49, 74)(51, 84)(52, 149)(54, 123)(55, 152)(56, 153)(57, 154)(59, 143)(60, 146)(63, 144)(66, 165)(67, 168)(69, 170)(71, 117)(73, 161)(75, 140)(76, 173)(77, 88)(78, 176)(80, 96)(81, 100)(82, 126)(83, 185)(85, 172)(90, 193)(91, 122)(93, 199)(94, 196)(98, 213)(99, 155)(102, 219)(104, 184)(106, 197)(107, 224)(108, 169)(109, 212)(110, 157)(111, 139)(114, 125)(115, 150)(116, 128)(120, 188)(121, 164)(129, 147)(130, 229)(134, 230)(135, 187)(136, 158)(137, 244)(141, 247)(142, 248)(145, 151)(148, 240)(156, 159)(160, 242)(163, 175)(166, 189)(167, 226)(171, 243)(174, 218)(177, 257)(178, 259)(179, 241)(181, 227)(182, 238)(186, 249)(194, 263)(195, 265)(198, 280)(200, 285)(201, 290)(202, 262)(203, 258)(204, 297)(205, 234)(206, 273)(207, 255)(208, 216)(209, 254)(210, 237)(211, 256)(214, 268)(217, 303)(220, 267)(221, 252)(222, 269)(223, 270)(225, 271)(231, 235)(239, 266)(250, 264)(260, 327)(261, 283)(274, 324)(275, 336)(277, 313)(278, 307)(279, 311)(281, 345)(282, 347)(284, 353)(287, 352)(288, 344)(291, 364)(293, 317)(294, 319)(295, 341)(296, 299)(298, 349)(300, 325)(301, 314)(302, 350)(304, 337)(305, 310)(306, 338)(308, 378)(312, 346)(315, 340)(316, 320)(318, 334)(321, 373)(322, 380)(323, 330)(326, 367)(329, 363)(332, 343)(335, 382)(339, 348)(342, 396)(351, 410)(354, 406)(357, 365)(358, 412)(359, 389)(360, 402)(361, 391)(362, 394)(366, 392)(368, 413)(369, 377)(370, 385)(372, 408)(374, 407)(376, 383)(379, 405)(381, 414)(384, 390)(386, 419)(388, 393)(395, 417)(397, 420)(399, 401)(400, 409)(403, 415)(404, 418)(411, 416)
c: (1, 2, 7, 29, 93, 200, 286, 138, 121, 212, 303, 347, 371, 403, 72, 26, 84, 189, 272, 340, 401, 141, 230, 115, 233, 313, 378, 410, 57, 77, 132, 223, 290, 363, 417, 137, 245, 104, 221, 307, 377, 418)(3, 12, 51, 148, 250, 321, 357, 158, 134, 101, 218, 259, 326, 386, 154, 176, 97, 211, 263, 334, 395, 18, 71, 124, 235, 297, 369, 388, 243, 130, 126, 237, 199, 284, 354, 49, 143, 100, 217, 203, 295, 368)(4, 16, 66, 166, 253, 322, 358, 140, 52, 150, 180, 266, 336, 397, 62, 88, 192, 196, 279, 350, 409, 244, 40, 128, 238, 317, 343, 404, 251, 172, 105, 205, 299, 285, 356, 60, 112, 188, 257, 282, 331, 392)(5, 21, 76, 174, 254, 323, 359, 47, 39, 30, 98, 214, 304, 375, 53, 117, 91, 197, 262, 333, 394, 171, 119, 187, 271, 276, 346, 406, 56, 27, 87, 190, 273, 341, 402, 142, 110, 183, 179, 264, 335, 396)(6, 25, 80, 178, 260, 328, 48, 139, 175, 256, 324, 355, 415, 170, 9, 38, 125, 236, 315, 383, 151, 229, 167, 215, 277, 348, 407, 74, 118, 191, 270, 283, 352, 413, 156, 228, 184, 208, 301, 373, 411, 24)(8, 34, 114, 232, 312, 381, 64, 161, 226, 95, 206, 300, 372, 58, 44, 133, 241, 316, 345, 405, 159, 86, 173, 219, 305, 364, 416, 246, 127, 185, 265, 319, 327, 387, 13, 54, 108, 193, 274, 289, 362, 17)(10, 43, 131, 239, 318, 384, 63, 157, 103, 94, 204, 298, 370, 20, 35, 116, 210, 280, 344, 389, 162, 85, 81, 181, 267, 337, 398, 146, 50, 147, 249, 202, 292, 366, 136, 168, 107, 225, 309, 380, 419, 55)(11, 46, 135, 207, 201, 291, 365, 15, 61, 155, 252, 294, 367, 412, 248, 89, 28, 90, 194, 275, 342, 242, 164, 113, 231, 311, 330, 391, 19, 73, 82, 182, 268, 338, 399, 14, 59, 32, 106, 222, 308, 379)(22, 41, 129, 195, 278, 349, 408, 247, 67, 169, 92, 198, 281, 351, 152, 33, 109, 227, 310, 329, 390)(23, 78, 83, 186, 269, 339, 400, 70, 123, 224, 255, 261, 332, 393, 68, 42, 99, 216, 296, 353, 414, 144, 45, 79, 177, 258, 325, 385, 160, 111, 165, 240, 320, 288, 361, 69, 149, 31, 102, 220, 306, 376)(36, 120, 96, 209, 302, 374, 153, 65, 163, 213, 293, 287, 360, 75, 37, 122, 234, 314, 382, 420, 145)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 420, 45 ]
420
-1 418 2 6 404
-2 1 25 7 251
-3 374 16 390 8
-4 385 26 368 9
-5 375 387 27 10
-6 1 79 28 251
-7 2 80 29 172
-8 3 81 160 30
-9 4 82 72 31
-10 5 159 83 32
-11 33 407 65 384
-12 22 66 34 153
-13 35 354 414 21
-14 67 419 36 383
-15 37 413 370 41
-16 3 38 160 84
-17 385 368 39 85
-18 374 390 40 86
-19 366 37 41 415
-20 375 387 61 42
-21 13 53 43 87
-22 12 365 71 391
-23 44 88 419 383
-24 418 45 89 404
-25 177 2 90 172
-26 4 38 72 84
-27 91 147 5 159
-28 92 6 85 96
-29 178 93 105 7
-30 179 94 8 119
-31 168 180 95 9
-32 92 96 229 10
-33 11 242 100 97
-34 12 111 181 98
-35 99 155 13 53
-36 100 14 248 97
-37 101 15 126 19
-38 102 26 16 182
-39 103 17 171 183
-40 70 104 18 184
-41 124 15 51 19
-42 156 105 20 185
-43 106 86 21 186
-44 154 187 23 107
-45 188 24 162 108
-46 63 74 163 109
-47 110 157 394 362
-48 286 111 356 164
-49 112 420 54 351
-50 165 56 113 64
-51 166 114 41 65
-52 167 69 158 115
-53 35 381 21 406
-54 144 49 116 76
-55 396 78 59 405
-56 396 50 117 405
-57 77 397 410 118
-58 386 376 168 119
-59 55 169 151 120
-60 121 354 139 414
-61 122 156 129 20
-62 77 386 376 118
-63 46 123 359 416
-64 357 50 117 361
-65 11 242 124 51
-66 12 111 189 125
-67 101 14 126 248
-68 127 413 172 370
-69 366 161 52 415
-70 407 40 86 384
-71 22 128 173 153
-72 26 392 403 9
-73 122 136 170 129
-74 397 46 123 410
-75 134 365 391 130
-76 190 117 54 131
-77 132 57 191 62
-78 55 133 192 151
-79 257 6 193 85
-80 258 105 7 194
-81 177 90 8 119
-82 168 234 195 9
-83 196 229 10 241
-84 189 26 125 16
-85 79 17 28 171
-86 70 18 43 87
-87 249 86 21 197
-88 132 154 23 191
-89 24 169 162 120
-90 198 209 25 81
-91 210 27 161 174
-92 199 28 259 32
-93 200 29 205 260
-94 201 30 261 185
-95 101 202 31 262
-96 203 28 32 263
-97 33 36 196 241
-98 187 264 34 204
-99 265 35 205 228
-100 33 36 257 193
-101 67 37 180 95
-102 266 38 107 206
-103 255 39 127 207
-104 221 245 40 208
-105 80 29 42 130
-106 198 209 167 43
-107 44 110 102 182
-108 143 45 210 174
-109 46 211 217 164
-110 187 47 246 107
-111 66 34 146 48
-112 144 212 49 175
-113 213 50 139 227
-114 165 267 214 51
-115 233 215 52 230
-116 117 216 54 252
-117 56 116 64 76
-118 57 135 224 62
-119 58 81 30 142
-120 89 211 59 217
-121 212 60 138 175
-122 61 237 73 218
-123 128 63 74 173
-124 238 41 65 219
-125 66 220 268 84
-126 67 265 37 205
-127 243 68 103 183
-128 221 123 71 208
-129 235 148 61 73
-130 247 105 75 185
-131 222 269 173 76
-132 77 88 223 270
-133 176 78 225 271
-134 247 226 150 75
-135 157 213 227 118
-136 149 402 73 372
-137 409 245 228 417
-138 121 286 356 139
-139 165 113 60 138
-140 357 229 361 230
-141 401 358 229 230
-142 168 359 119 416
-143 188 145 108 152
-144 112 389 411 54
-145 143 176 399 412
-146 111 381 164 406
-147 231 27 161 240
-148 253 232 129 163
-149 136 170 226 150
-150 134 233 149 215
-151 78 59 401 358
-152 143 176 342 379
-153 12 342 71 379
-154 44 88 420 351
-155 35 234 195 228
-156 409 61 42 417
-157 47 135 224 246
-158 408 161 52 360
-159 400 27 10 395
-160 398 16 8 328
-161 69 91 147 158
-162 45 89 394 362
-163 46 235 148 164
-164 146 48 163 109
-165 166 114 50 139
-166 165 236 51 272
-167 106 52 186 230
-168 58 82 31 142
-169 89 59 237 218
-170 149 73 392 403
-171 39 402 85 372
-172 243 68 25 7
-173 123 190 71 131
-174 91 239 108 273
-175 121 231 112 240
-176 133 145 192 152
-177 25 81 282 274
-178 275 325 29 205
-179 276 309 30 185
-180 101 277 313 31
-181 187 34 258 194
-182 278 38 314 107
-183 225 39 127 271
-184 245 40 216 252
-185 179 94 42 130
-186 167 279 316 43
-187 44 110 181 98
-188 143 45 256 303
-189 66 236 84 272
-190 202 173 262 76
-191 77 88 255 207
-192 176 78 223 270
-193 100 254 79 280
-194 80 181 302 281
-195 297 155 82 250
-196 290 83 283 97
-197 254 280 226 87
-198 90 106 326 284
-199 234 92 327 285
-200 286 299 93 328
-201 287 94 270 329
-202 330 288 190 95
-203 331 289 227 96
-204 265 332 291 98
-205 99 178 93 126
-206 102 333 292 218
-207 310 103 191 293
-208 104 128 294 296
-209 90 334 106 295
-210 91 294 108 296
-211 279 316 109 120
-212 121 112 256 303
-213 297 113 135 250
-214 298 114 335 271
-215 222 115 269 150
-216 319 299 116 184
-217 282 109 120 274
-218 122 266 169 206
-219 124 224 239 273
-220 300 125 225 336
-221 301 104 128 307
-222 302 215 281 131
-223 132 290 192 283
-224 157 238 118 219
-225 220 133 268 183
-226 134 149 249 197
-227 113 135 203 263
-228 99 155 244 137
-229 83 140 141 32
-230 167 115 140 141
-231 310 147 293 175
-232 148 304 337 240
-233 277 115 313 150
-234 155 199 82 259
-235 129 305 163 317
-236 166 189 338 306
-237 319 122 299 169
-238 124 224 301 307
-239 308 174 339 219
-240 253 232 147 175
-241 276 309 83 97
-242 33 398 328 65
-243 408 127 172 360
-244 245 400 228 395
-245 244 104 137 184
-246 110 157 388 393
-247 134 399 412 130
-248 67 36 389 411
-249 320 311 226 87
-250 322 213 312 195
-251 2 388 6 393
-252 278 116 314 184
-253 148 315 240 340
-254 341 193 197 318
-255 103 191 305 317
-256 188 320 212 311
-257 100 79 324 347
-258 331 80 289 181
-259 234 300 92 336
-260 385 342 299 93
-261 364 343 94 270
-262 190 344 323 95
-263 345 227 96 350
-264 265 346 380 98
-265 99 264 126 204
-266 102 378 348 218
-267 275 114 325 271
-268 125 225 349 382
-269 345 215 350 131
-270 132 201 192 261
-271 133 267 214 183
-272 166 189 315 340
-273 333 292 174 219
-274 177 344 323 217
-275 374 178 267 351
-276 179 304 337 241
-277 308 233 180 339
-278 321 182 369 252
-279 352 363 211 186
-280 353 367 193 197
-281 386 222 354 194
-282 177 355 217 371
-283 332 223 291 196
-284 198 387 356 314
-285 286 199 328 296
-286 200 48 138 285
-287 201 311 388 357
-288 202 324 358 381
-289 389 203 258 359
-290 352 363 223 196
-291 390 204 283 360
-292 391 206 273 361
-293 231 321 369 207
-294 210 349 382 208
-295 209 310 392 362
-296 210 327 208 285
-297 364 343 213 195
-298 319 365 214 393
-299 200 237 216 260
-300 220 366 259 394
-301 221 353 367 238
-302 222 368 194 395
-303 188 212 324 347
-304 396 232 276 370
-305 341 255 235 318
-306 309 397 236 372
-307 221 377 238 373
-308 374 277 239 351
-309 179 338 306 241
-310 231 334 207 295
-311 287 256 249 329
-312 320 375 398 250
-313 233 180 378 348
-314 182 326 284 252
-315 253 376 399 272
-316 211 346 380 186
-317 255 377 235 373
-318 254 400 379 305
-319 298 335 237 216
-320 256 322 312 249
-321 278 358 293 381
-322 320 401 250 383
-323 402 262 274 384
-324 330 288 257 303
-325 178 267 392 362
-326 198 397 314 372
-327 396 199 370 296
-328 242 200 160 285
-329 201 311 368 395
-330 202 324 390 360
-331 203 258 403 415
-332 204 283 404 416
-333 389 359 206 273
-334 209 310 409 405
-335 319 419 214 406
-336 220 407 410 259
-337 385 232 276 342
-338 309 408 420 236
-339 277 409 239 405
-340 253 401 272 383
-341 254 366 305 394
-342 260 337 152 153
-343 297 418 411 261
-344 412 414 262 274
-345 419 269 263 406
-346 264 375 398 316
-347 355 257 303 371
-348 266 400 313 379
-349 388 268 357 294
-350 269 413 263 417
-351 154 275 308 49
-352 365 279 290 393
-353 387 301 356 280
-354 13 60 281 382
-355 347 391 282 361
-356 353 48 138 284
-357 287 140 349 64
-358 288 321 151 141
-359 289 333 63 142
-360 330 243 158 291
-361 355 292 140 64
-362 47 325 162 295
-363 279 290 413 417
-364 297 402 261 384
-365 22 352 298 75
-366 341 69 300 19
-367 408 420 301 280
-368 4 302 17 329
-369 278 293 404 416
-370 68 15 304 327
-371 347 282 403 415
-372 136 171 326 306
-373 412 414 317 307
-374 275 308 3 18
-375 312 5 346 20
-376 58 380 62 315
-377 418 411 317 307
-378 407 266 410 313
-379 348 152 153 318
-380 264 376 399 316
-381 288 321 146 53
-382 386 354 268 294
-383 23 14 322 340
-384 11 364 70 323
-385 4 17 260 337
-386 58 281 62 382
-387 353 5 20 284
-388 287 246 349 251
-389 144 289 333 248
-390 330 3 291 18
-391 22 355 292 75
-392 170 72 325 295
-393 352 298 246 251
-394 341 47 300 162
-395 244 159 302 329
-396 55 56 304 327
-397 57 326 74 306
-398 242 312 346 160
-399 145 247 380 315
-400 244 159 348 318
-401 322 151 141 340
-402 364 136 323 171
-403 331 170 72 371
-404 1 24 332 369
-405 55 56 334 339
-406 146 345 335 53
-407 11 70 378 336
-408 243 158 367 338
-409 156 334 137 339
-410 57 378 336 74
-411 144 343 377 248
-412 145 344 247 373
-413 363 68 15 350
-414 13 344 60 373
-415 331 69 19 371
-416 332 369 63 142
-417 363 156 137 350
-418 1 24 343 377
-419 23 14 345 335
-420 154 367 49 338
0

**************