[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 432, 1 ] =
W(216,2).
(I) Following is a form readable by MAGMA:
g:=Graph<432|{ {2, 3}, {430, 431}, {428, 429}, {426, 427}, {424, 425}, {422,
423}, {420, 421}, {418, 419}, {416, 417}, {414, 415}, {412, 413}, {410, 411},
{408, 409}, {406, 407}, {404, 405}, {402, 403}, {400, 401}, {398, 399}, {396,
397}, {394, 395}, {392, 393}, {390, 391}, {388, 389}, {386, 387}, {384, 385},
{382, 383}, {380, 381}, {378, 379}, {376, 377}, {374, 375}, {372, 373}, {370,
371}, {368, 369}, {366, 367}, {364, 365}, {362, 363}, {360, 361}, {358, 359},
{356, 357}, {354, 355}, {352, 353}, {350, 351}, {348, 349}, {346, 347}, {344,
345}, {342, 343}, {340, 341}, {338, 339}, {336, 337}, {334, 335}, {332, 333},
{330, 331}, {328, 329}, {326, 327}, {324, 325}, {322, 323}, {320, 321}, {318,
319}, {316, 317}, {314, 315}, {312, 313}, {310, 311}, {308, 309}, {306, 307},
{304, 305}, {302, 303}, {300, 301}, {298, 299}, {296, 297}, {294, 295}, {292,
293}, {290, 291}, {288, 289}, {286, 287}, {284, 285}, {282, 283}, {280, 281},
{278, 279}, {276, 277}, {274, 275}, {272, 273}, {270, 271}, {268, 269}, {266,
267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255},
{252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240,
241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229},
{226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214,
215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203},
{200, 201}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106,
107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92,
93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76,
77}, {74, 75}, {72, 73}, {70, 71}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13},
{14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29},
{30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45},
{46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61},
{62, 63}, {64, 65}, {66, 67}, {68, 69}, {118, 119}, {120, 121}, {122, 123},
{124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136,
137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149},
{150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162,
163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175},
{176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188,
189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199}, {1, 2}, {429,
430}, {425, 426}, {421, 422}, {417, 418}, {413, 414}, {409, 410}, {405, 406},
{401, 402}, {397, 398}, {393, 394}, {389, 390}, {385, 386}, {381, 382}, {377,
378}, {373, 374}, {369, 370}, {365, 366}, {361, 362}, {357, 358}, {353, 354},
{349, 350}, {345, 346}, {341, 342}, {337, 338}, {333, 334}, {329, 330}, {325,
326}, {321, 322}, {317, 318}, {313, 314}, {309, 310}, {305, 306}, {301, 302},
{297, 298}, {293, 294}, {289, 290}, {285, 286}, {281, 282}, {277, 278}, {273,
274}, {269, 270}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250},
{245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221,
222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {113, 114},
{109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81,
82}, {77, 78}, {73, 74}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25,
26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57,
58}, {61, 62}, {65, 66}, {69, 70}, {117, 118}, {121, 122}, {125, 126}, {129,
130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154},
{157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181,
182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {3, 4}, {427, 428}, {419,
420}, {411, 412}, {403, 404}, {395, 396}, {387, 388}, {379, 380}, {371, 372},
{363, 364}, {355, 356}, {347, 348}, {339, 340}, {331, 332}, {323, 324}, {315,
316}, {307, 308}, {299, 300}, {291, 292}, {283, 284}, {275, 276}, {267, 268},
{259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {211,
212}, {203, 204}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75,
76}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {59, 60}, {67,
68}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164},
{171, 172}, {179, 180}, {187, 188}, {195, 196}, {7, 8}, {423, 424}, {407, 408},
{391, 392}, {375, 376}, {359, 360}, {343, 344}, {327, 328}, {311, 312}, {295,
296}, {279, 280}, {263, 264}, {247, 248}, {231, 232}, {215, 216}, {199, 200},
{103, 104}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {119, 120}, {135,
136}, {151, 152}, {167, 168}, {183, 184}, {15, 16}, {431, 432}, {399, 400},
{367, 368}, {335, 336}, {303, 304}, {271, 272}, {239, 240}, {207, 208}, {111,
112}, {79, 80}, {47, 48}, {143, 144}, {175, 176}, {31, 32}, {415, 416}, {351,
352}, {287, 288}, {223, 224}, {95, 96}, {159, 160}, {63, 64}, {319, 320}, {191,
192}, {8, 223}, {32, 247}, {40, 255}, {1, 216}, {2, 219}, {3, 218}, {4, 221},
{5, 220}, {6, 223}, {7, 222}, {32, 249}, {33, 248}, {34, 251}, {35, 250}, {36,
253}, {37, 252}, {38, 255}, {39, 254}, {1, 218}, {2, 217}, {5, 222}, {6, 221},
{33, 250}, {34, 249}, {37, 254}, {38, 253}, {3, 220}, {4, 219}, {35, 252}, {36,
251}, {7, 224}, {15, 232}, {23, 240}, {31, 248}, {8, 225}, {9, 224}, {10, 227},
{11, 226}, {12, 229}, {13, 228}, {14, 231}, {15, 230}, {24, 241}, {25, 240},
{26, 243}, {27, 242}, {28, 245}, {29, 244}, {30, 247}, {31, 246}, {9, 226}, {10,
225}, {13, 230}, {14, 229}, {25, 242}, {26, 241}, {29, 246}, {30, 245}, {11,
228}, {12, 227}, {27, 244}, {28, 243}, {16, 231}, {24, 239}, {16, 233}, {17,
232}, {18, 235}, {19, 234}, {20, 237}, {21, 236}, {22, 239}, {23, 238}, {17,
234}, {18, 233}, {21, 238}, {22, 237}, {19, 236}, {383, 384}, {20, 235}, {127,
128}, {39, 256}, {111, 328}, {103, 320}, {47, 264}, {55, 272}, {63, 280}, {119,
336}, {127, 344}, {167, 384}, {175, 392}, {183, 400}, {191, 408}, {40, 257},
{111, 326}, {110, 327}, {109, 324}, {108, 325}, {107, 322}, {106, 323}, {105,
320}, {104, 321}, {41, 256}, {42, 259}, {43, 258}, {44, 261}, {45, 260}, {46,
263}, {47, 262}, {56, 273}, {57, 272}, {58, 275}, {59, 274}, {60, 277}, {61,
276}, {62, 279}, {63, 278}, {120, 337}, {121, 336}, {122, 339}, {123, 338},
{124, 341}, {125, 340}, {126, 343}, {127, 342}, {168, 385}, {169, 384}, {170,
387}, {171, 386}, {172, 389}, {173, 388}, {174, 391}, {175, 390}, {184, 401},
{185, 400}, {186, 403}, {187, 402}, {188, 405}, {189, 404}, {190, 407}, {191,
406}, {41, 258}, {110, 325}, {109, 326}, {106, 321}, {105, 322}, {42, 257}, {45,
262}, {46, 261}, {57, 274}, {58, 273}, {61, 278}, {62, 277}, {121, 338}, {122,
337}, {125, 342}, {126, 341}, {169, 386}, {170, 385}, {173, 390}, {174, 389},
{185, 402}, {186, 401}, {189, 406}, {190, 405}, {43, 260}, {108, 323}, {107,
324}, {44, 259}, {59, 276}, {60, 275}, {123, 340}, {124, 339}, {171, 388}, {172,
387}, {187, 404}, {188, 403}, {48, 263}, {112, 327}, {56, 271}, {120, 335},
{176, 391}, {184, 399}, {48, 265}, {115, 330}, {114, 331}, {113, 328}, {112,
329}, {49, 264}, {50, 267}, {51, 266}, {52, 269}, {53, 268}, {54, 271}, {55,
270}, {116, 333}, {117, 332}, {118, 335}, {119, 334}, {176, 393}, {177, 392},
{178, 395}, {179, 394}, {180, 397}, {181, 396}, {182, 399}, {183, 398}, {49,
266}, {114, 329}, {113, 330}, {50, 265}, {53, 270}, {54, 269}, {117, 334}, {118,
333}, {177, 394}, {178, 393}, {181, 398}, {182, 397}, {51, 268}, {116, 331},
{115, 332}, {52, 267}, {179, 396}, {180, 395}, {64, 279}, {200, 415}, {104,
319}, {96, 311}, {72, 287}, {192, 407}, {64, 281}, {199, 414}, {198, 415}, {103,
318}, {102, 319}, {101, 316}, {100, 317}, {99, 314}, {98, 315}, {97, 312}, {96,
313}, {71, 286}, {70, 287}, {65, 280}, {66, 283}, {67, 282}, {68, 285}, {69,
284}, {192, 409}, {193, 408}, {194, 411}, {195, 410}, {196, 413}, {197, 412},
{65, 282}, {102, 317}, {101, 318}, {98, 313}, {97, 314}, {70, 285}, {69, 286},
{66, 281}, {193, 410}, {194, 409}, {197, 414}, {198, 413}, {67, 284}, {100,
315}, {99, 316}, {68, 283}, {195, 412}, {196, 411}, {71, 288}, {215, 432}, {207,
424}, {199, 416}, {95, 312}, {87, 304}, {79, 296}, {72, 289}, {217, 432}, {207,
422}, {206, 423}, {205, 420}, {204, 421}, {203, 418}, {202, 419}, {201, 416},
{200, 417}, {95, 310}, {94, 311}, {93, 308}, {92, 309}, {91, 306}, {90, 307},
{89, 304}, {88, 305}, {79, 294}, {78, 295}, {77, 292}, {76, 293}, {75, 290},
{74, 291}, {73, 288}, {73, 290}, {206, 421}, {205, 422}, {202, 417}, {201, 418},
{94, 309}, {93, 310}, {90, 305}, {89, 306}, {78, 293}, {77, 294}, {74, 289},
{75, 292}, {204, 419}, {203, 420}, {92, 307}, {91, 308}, {76, 291}, {80, 295},
{216, 431}, {208, 423}, {88, 303}, {80, 297}, {215, 430}, {214, 431}, {213,
428}, {212, 429}, {211, 426}, {210, 427}, {209, 424}, {208, 425}, {87, 302},
{86, 303}, {85, 300}, {84, 301}, {83, 298}, {82, 299}, {81, 296}, {81, 298},
{214, 429}, {213, 430}, {210, 425}, {209, 426}, {86, 301}, {85, 302}, {82, 297},
{83, 300}, {212, 427}, {211, 428}, {84, 299}, {1, 432}, {128, 343}, {136, 351},
{160, 375}, {168, 383}, {128, 345}, {129, 344}, {130, 347}, {131, 346}, {132,
349}, {133, 348}, {134, 351}, {135, 350}, {160, 377}, {161, 376}, {162, 379},
{163, 378}, {164, 381}, {165, 380}, {166, 383}, {167, 382}, {129, 346}, {130,
345}, {133, 350}, {134, 349}, {161, 378}, {162, 377}, {165, 382}, {166, 381},
{131, 348}, {132, 347}, {163, 380}, {164, 379}, {135, 352}, {143, 360}, {151,
368}, {159, 376}, {136, 353}, {137, 352}, {138, 355}, {139, 354}, {140, 357},
{141, 356}, {142, 359}, {143, 358}, {152, 369}, {153, 368}, {154, 371}, {155,
370}, {156, 373}, {157, 372}, {158, 375}, {159, 374}, {137, 354}, {138, 353},
{141, 358}, {142, 357}, {153, 370}, {154, 369}, {157, 374}, {158, 373}, {139,
356}, {140, 355}, {155, 372}, {156, 371}, {144, 359}, {152, 367}, {144, 361},
{145, 360}, {146, 363}, {147, 362}, {148, 365}, {149, 364}, {150, 367}, {151,
366}, {145, 362}, {146, 361}, {149, 366}, {150, 365}, {147, 364}, {255, 256},
{148, 363} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216)(217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260,
261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292,
293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308,
309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324,
325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340,
341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356,
357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372,
373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388,
389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404,
405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420,
421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (29, 245)
c: (177, 393)
d: (113, 329)
e: (49, 265)
f: (148, 364)
g: (17, 233)
h: (20, 236)
m: (197, 413)
n1: (102, 318)
a1: (69, 285)
b1: (33, 249)
c1: (2, 218)
d1: (215, 431)
e1: (87, 303)
f1: (9, 225)
g1: (161, 377)
h1: (130, 346)
m1: (204, 420)
n2: (76, 292)
a2: (15, 231)
b2: (5, 221)
c2: (38, 254)
d2: (96, 312)
e2: (140, 356)
f2: (174, 390)
g2: (46, 262)
h2: (110, 326)
m2: (189, 405)
n3: (125, 341)
a3: (61, 277)
b3: (187, 403)
c3: (123, 339)
d3: (59, 275)
e3: (206, 422)
f3: (78, 294)
g3: (144, 360)
h3: (131, 347)
m3: (164, 380)
n4: (207, 423)
a4: (79, 295)
b4: (6, 222)
c4: (37, 253)
d4: (11, 227)
e4: (14, 230)
f4: (88, 304)
g4: (216, 432)
h4: (152, 368)
m4: (44, 260)
n5: (172, 388)
a5: (108, 324)
b5: (203, 419)
c5: (25, 241)
d5: (75, 291)
e5: (179, 395)
f5: (115, 331)
g5: (51, 267)
h5: (156, 372)
m5: (34, 250)
n6: (13, 229)
a6: (31, 247)
b6: (139, 355)
c6: (193, 409)
d6: (98, 314)
e6: (65, 281)
f6: (200, 416)
g6: (103, 319)
h6: (72, 288)
m6: (2, 216)(3, 215)(4, 214)(5, 213)(6, 212)(7, 211)(8, 210)(9, 209)(10,
208)(11, 207)(12, 206)(13, 205)(14, 204)(15, 203)(16, 202)(17, 201)(18, 200)(19,
199)(20, 198)(21, 197)(22, 196)(23, 195)(24, 194)(25, 193)(26, 192)(27, 191)(28,
190)(29, 189)(30, 188)(31, 187)(32, 186)(33, 185)(34, 184)(35, 183)(36, 182)(37,
181)(38, 180)(39, 179)(40, 178)(41, 177)(42, 176)(43, 175)(44, 174)(45, 173)(46,
172)(47, 171)(48, 170)(49, 169)(50, 168)(51, 167)(52, 166)(53, 165)(54, 164)(55,
163)(56, 162)(57, 161)(58, 160)(59, 159)(60, 158)(61, 157)(62, 156)(63, 155)(64,
154)(65, 153)(66, 152)(67, 151)(68, 150)(69, 149)(70, 148)(71, 147)(72, 146)(73,
145)(74, 144)(75, 143)(76, 142)(77, 141)(78, 140)(79, 139)(80, 138)(81, 137)(82,
136)(83, 135)(84, 134)(85, 133)(86, 132)(87, 131)(88, 130)(89, 129)(90, 128)(91,
127)(92, 126)(93, 125)(94, 124)(95, 123)(96, 122)(97, 121)(98, 120)(99,
119)(100, 118)(101, 117)(102, 116)(103, 115)(104, 114)(105, 113)(106, 112)(107,
111)(108, 110)(218, 432)(219, 431)(220, 430)(221, 429)(222, 428)(223, 427)(224,
426)(225, 425)(226, 424)(227, 423)(228, 422)(229, 421)(230, 420)(231, 419)(232,
418)(233, 417)(234, 416)(235, 415)(236, 414)(237, 413)(238, 412)(239, 411)(240,
410)(241, 409)(242, 408)(243, 407)(244, 406)(245, 405)(246, 404)(247, 403)(248,
402)(249, 401)(250, 400)(251, 399)(252, 398)(253, 397)(254, 396)(255, 395)(256,
394)(257, 393)(258, 392)(259, 391)(260, 390)(261, 389)(262, 388)(263, 387)(264,
386)(265, 385)(266, 384)(267, 383)(268, 382)(269, 381)(270, 380)(271, 379)(272,
378)(273, 377)(274, 376)(275, 375)(276, 374)(277, 373)(278, 372)(279, 371)(280,
370)(281, 369)(282, 368)(283, 367)(284, 366)(285, 365)(286, 364)(287, 363)(288,
362)(289, 361)(290, 360)(291, 359)(292, 358)(293, 357)(294, 356)(295, 355)(296,
354)(297, 353)(298, 352)(299, 351)(300, 350)(301, 349)(302, 348)(303, 347)(304,
346)(305, 345)(306, 344)(307, 343)(308, 342)(309, 341)(310, 340)(311, 339)(312,
338)(313, 337)(314, 336)(315, 335)(316, 334)(317, 333)(318, 332)(319, 331)(320,
330)(321, 329)(322, 328)(323, 327)(324, 326)
n7: (208, 424)
a7: (80, 296)
b7: (162, 378)
c7: (129, 345)
d7: (196, 412)
e7: (99, 315)
f7: (68, 284)
g7: (94, 310)
h7: (182, 398)
m7: (118, 334)
n8: (54, 270)
a8: (32, 248)
b8: (178, 394)
c8: (114, 330)
d8: (50, 266)
e8: (147, 363)
f8: (142, 358)
g8: (47, 263)
h8: (175, 391)
m8: (111, 327)
n9: (160, 376)
a9: (190, 406)
b9: (126, 342)
c9: (62, 278)
d9: (202, 418)
e9: (74, 290)
f9: (180, 396)
g9: (116, 332)
h9: (52, 268)
m9: (43, 259)
n10: (171, 387)
a10: (21, 237)
b10: (41, 257)
c10: (105, 321)
d10: (169, 385)
e10: (199, 415)
f10: (104, 320)
g10: (71, 287)
h10: (23, 239)
m10: (143, 359)
n11: (165, 381)
a11: (134, 350)
b11: (30, 246)
c11: (211, 427)
d11: (84, 300)
e11: (212, 428)
f11: (83, 299)
g11: (167, 383)
h11: (136, 352)
m11: (141, 357)
n12: (151, 367)
a12: (159, 375)
b12: (91, 307)
c12: (92, 308)
d12: (163, 379)
e12: (132, 348)
f12: (168, 384)
g12: (135, 351)
h12: (188, 404)
m12: (124, 340)
n13: (60, 276)
a13: (173, 389)
b13: (45, 261)
c13: (109, 325)
d13: (89, 305)
e13: (90, 306)
f13: (155, 371)
g13: (40, 256)
h13: (7, 223)
m13: (137, 353)
n14: (194, 410)
a14: (97, 313)
b14: (66, 282)
c14: (39, 255)
d14: (8, 224)
e14: (213, 429)
f14: (85, 301)
g14: (192, 408)
h14: (121, 337)
m14: (57, 273)
n15: (185, 401)
a15: (128, 344)
b15: (64, 280)
c15: (10, 226)
d15: (27, 243)
e15: (195, 411)
f15: (100, 316)
g15: (67, 283)
h15: (191, 407)
m15: (127, 343)
n16: (63, 279)
a16: (12, 228)
b16: (150, 366)
c16: (154, 370)
d16: (186, 402)
e16: (122, 338)
f16: (58, 274)
g16: (214, 430)
h16: (86, 302)
m16: (181, 397)
n17: (117, 333)
a17: (53, 269)
b17: (95, 311)
c17: (183, 399)
d17: (119, 335)
e17: (55, 271)
f17: (145, 361)
g17: (24, 240)
h17: (149, 365)
m17: (42, 258)
n18: (106, 322)
a18: (170, 386)
b18: (19, 235)
c18: (73, 289)
d18: (201, 417)
e18: (209, 425)
f18: (81, 297)
g18: (138, 354)
h18: (176, 392)
m18: (112, 328)
n19: (48, 264)
a19: (22, 238)
b19: (153, 369)
c19: (18, 234)
d19: (205, 421)
e19: (77, 293)
f19: (146, 362)
g19: (16, 232)
h19: (28, 244)
m19: (157, 373)
n20: (35, 251)
a20: (4, 220)
b20: (210, 426)
c20: (82, 298)
d20: (26, 242)
e20: (166, 382)
f20: (133, 349)
g20: (3, 219)
h20: (36, 252)
m20: (184, 400)
n21: (158, 374)
a21: (120, 336)
b21: (56, 272)
c21: (93, 309)
d21: (198, 414)
e21: (101, 317)
f21: (70, 286)
C4[ 432, 1 ]
432
-1 2 432 216 218
-2 1 3 217 219
-3 220 2 4 218
-4 221 3 5 219
-5 220 222 4 6
-6 221 223 5 7
-7 222 224 6 8
-8 223 225 7 9
-9 224 226 8 10
-10 11 225 227 9
-11 12 226 228 10
-12 11 13 227 229
-13 12 14 228 230
-14 231 13 15 229
-15 232 14 16 230
-16 231 233 15 17
-17 232 234 16 18
-18 233 235 17 19
-19 234 236 18 20
-20 235 237 19 21
-21 22 236 238 20
-22 23 237 239 21
-23 22 24 238 240
-24 23 25 239 241
-25 242 24 26 240
-26 243 25 27 241
-27 242 244 26 28
-28 243 245 27 29
-29 244 246 28 30
-30 245 247 29 31
-31 246 248 30 32
-32 33 247 249 31
-33 34 248 250 32
-34 33 35 249 251
-35 34 36 250 252
-36 253 35 37 251
-37 254 36 38 252
-38 253 255 37 39
-39 254 256 38 40
-40 255 257 39 41
-41 256 258 40 42
-42 257 259 41 43
-43 44 258 260 42
-44 45 259 261 43
-45 44 46 260 262
-46 45 47 261 263
-47 264 46 48 262
-48 265 47 49 263
-49 264 266 48 50
-50 265 267 49 51
-51 266 268 50 52
-52 267 269 51 53
-53 268 270 52 54
-54 55 269 271 53
-55 56 270 272 54
-56 55 57 271 273
-57 56 58 272 274
-58 275 57 59 273
-59 276 58 60 274
-60 275 277 59 61
-61 276 278 60 62
-62 277 279 61 63
-63 278 280 62 64
-64 279 281 63 65
-65 66 280 282 64
-66 67 281 283 65
-67 66 68 282 284
-68 67 69 283 285
-69 286 68 70 284
-70 287 69 71 285
-71 286 288 70 72
-72 287 289 71 73
-73 288 290 72 74
-74 289 291 73 75
-75 290 292 74 76
-76 77 291 293 75
-77 78 292 294 76
-78 77 79 293 295
-79 78 80 294 296
-80 297 79 81 295
-81 298 80 82 296
-82 297 299 81 83
-83 298 300 82 84
-84 299 301 83 85
-85 300 302 84 86
-86 301 303 85 87
-87 88 302 304 86
-88 89 303 305 87
-89 88 90 304 306
-90 89 91 305 307
-91 308 90 92 306
-92 309 91 93 307
-93 308 310 92 94
-94 309 311 93 95
-95 310 312 94 96
-96 311 313 95 97
-97 312 314 96 98
-98 99 313 315 97
-99 100 314 316 98
-100 99 101 315 317
-101 100 102 316 318
-102 319 101 103 317
-103 320 102 104 318
-104 319 321 103 105
-105 320 322 104 106
-106 321 323 105 107
-107 322 324 106 108
-108 323 325 107 109
-109 110 324 326 108
-110 111 325 327 109
-111 110 112 326 328
-112 111 113 327 329
-113 330 112 114 328
-114 331 113 115 329
-115 330 332 114 116
-116 331 333 115 117
-117 332 334 116 118
-118 333 335 117 119
-119 334 336 118 120
-120 121 335 337 119
-121 122 336 338 120
-122 121 123 337 339
-123 122 124 338 340
-124 341 123 125 339
-125 342 124 126 340
-126 341 343 125 127
-127 342 344 126 128
-128 343 345 127 129
-129 344 346 128 130
-130 345 347 129 131
-131 132 346 348 130
-132 133 347 349 131
-133 132 134 348 350
-134 133 135 349 351
-135 352 134 136 350
-136 353 135 137 351
-137 352 354 136 138
-138 353 355 137 139
-139 354 356 138 140
-140 355 357 139 141
-141 356 358 140 142
-142 143 357 359 141
-143 144 358 360 142
-144 143 145 359 361
-145 144 146 360 362
-146 363 145 147 361
-147 364 146 148 362
-148 363 365 147 149
-149 364 366 148 150
-150 365 367 149 151
-151 366 368 150 152
-152 367 369 151 153
-153 154 368 370 152
-154 155 369 371 153
-155 154 156 370 372
-156 155 157 371 373
-157 374 156 158 372
-158 375 157 159 373
-159 374 376 158 160
-160 375 377 159 161
-161 376 378 160 162
-162 377 379 161 163
-163 378 380 162 164
-164 165 379 381 163
-165 166 380 382 164
-166 165 167 381 383
-167 166 168 382 384
-168 385 167 169 383
-169 386 168 170 384
-170 385 387 169 171
-171 386 388 170 172
-172 387 389 171 173
-173 388 390 172 174
-174 389 391 173 175
-175 176 390 392 174
-176 177 391 393 175
-177 176 178 392 394
-178 177 179 393 395
-179 396 178 180 394
-180 397 179 181 395
-181 396 398 180 182
-182 397 399 181 183
-183 398 400 182 184
-184 399 401 183 185
-185 400 402 184 186
-186 187 401 403 185
-187 188 402 404 186
-188 187 189 403 405
-189 188 190 404 406
-190 407 189 191 405
-191 408 190 192 406
-192 407 409 191 193
-193 408 410 192 194
-194 409 411 193 195
-195 410 412 194 196
-196 411 413 195 197
-197 198 412 414 196
-198 199 413 415 197
-199 198 200 414 416
-200 199 201 415 417
-201 418 200 202 416
-202 419 201 203 417
-203 418 420 202 204
-204 419 421 203 205
-205 420 422 204 206
-206 421 423 205 207
-207 422 424 206 208
-208 209 423 425 207
-209 210 424 426 208
-210 209 211 425 427
-211 210 212 426 428
-212 429 211 213 427
-213 430 212 214 428
-214 429 431 213 215
-215 430 432 214 216
-216 1 431 215 217
-217 2 432 216 218
-218 1 3 217 219
-219 220 2 4 218
-220 221 3 5 219
-221 220 222 4 6
-222 221 223 5 7
-223 222 224 6 8
-224 223 225 7 9
-225 224 226 8 10
-226 11 225 227 9
-227 12 226 228 10
-228 11 13 227 229
-229 12 14 228 230
-230 231 13 15 229
-231 232 14 16 230
-232 231 233 15 17
-233 232 234 16 18
-234 233 235 17 19
-235 234 236 18 20
-236 235 237 19 21
-237 22 236 238 20
-238 23 237 239 21
-239 22 24 238 240
-240 23 25 239 241
-241 242 24 26 240
-242 243 25 27 241
-243 242 244 26 28
-244 243 245 27 29
-245 244 246 28 30
-246 245 247 29 31
-247 246 248 30 32
-248 33 247 249 31
-249 34 248 250 32
-250 33 35 249 251
-251 34 36 250 252
-252 253 35 37 251
-253 254 36 38 252
-254 253 255 37 39
-255 254 256 38 40
-256 255 257 39 41
-257 256 258 40 42
-258 257 259 41 43
-259 44 258 260 42
-260 45 259 261 43
-261 44 46 260 262
-262 45 47 261 263
-263 264 46 48 262
-264 265 47 49 263
-265 264 266 48 50
-266 265 267 49 51
-267 266 268 50 52
-268 267 269 51 53
-269 268 270 52 54
-270 55 269 271 53
-271 56 270 272 54
-272 55 57 271 273
-273 56 58 272 274
-274 275 57 59 273
-275 276 58 60 274
-276 275 277 59 61
-277 276 278 60 62
-278 277 279 61 63
-279 278 280 62 64
-280 279 281 63 65
-281 66 280 282 64
-282 67 281 283 65
-283 66 68 282 284
-284 67 69 283 285
-285 286 68 70 284
-286 287 69 71 285
-287 286 288 70 72
-288 287 289 71 73
-289 288 290 72 74
-290 289 291 73 75
-291 290 292 74 76
-292 77 291 293 75
-293 78 292 294 76
-294 77 79 293 295
-295 78 80 294 296
-296 297 79 81 295
-297 298 80 82 296
-298 297 299 81 83
-299 298 300 82 84
-300 299 301 83 85
-301 300 302 84 86
-302 301 303 85 87
-303 88 302 304 86
-304 89 303 305 87
-305 88 90 304 306
-306 89 91 305 307
-307 308 90 92 306
-308 309 91 93 307
-309 308 310 92 94
-310 309 311 93 95
-311 310 312 94 96
-312 311 313 95 97
-313 312 314 96 98
-314 99 313 315 97
-315 100 314 316 98
-316 99 101 315 317
-317 100 102 316 318
-318 319 101 103 317
-319 320 102 104 318
-320 319 321 103 105
-321 320 322 104 106
-322 321 323 105 107
-323 322 324 106 108
-324 323 325 107 109
-325 110 324 326 108
-326 111 325 327 109
-327 110 112 326 328
-328 111 113 327 329
-329 330 112 114 328
-330 331 113 115 329
-331 330 332 114 116
-332 331 333 115 117
-333 332 334 116 118
-334 333 335 117 119
-335 334 336 118 120
-336 121 335 337 119
-337 122 336 338 120
-338 121 123 337 339
-339 122 124 338 340
-340 341 123 125 339
-341 342 124 126 340
-342 341 343 125 127
-343 342 344 126 128
-344 343 345 127 129
-345 344 346 128 130
-346 345 347 129 131
-347 132 346 348 130
-348 133 347 349 131
-349 132 134 348 350
-350 133 135 349 351
-351 352 134 136 350
-352 353 135 137 351
-353 352 354 136 138
-354 353 355 137 139
-355 354 356 138 140
-356 355 357 139 141
-357 356 358 140 142
-358 143 357 359 141
-359 144 358 360 142
-360 143 145 359 361
-361 144 146 360 362
-362 363 145 147 361
-363 364 146 148 362
-364 363 365 147 149
-365 364 366 148 150
-366 365 367 149 151
-367 366 368 150 152
-368 367 369 151 153
-369 154 368 370 152
-370 155 369 371 153
-371 154 156 370 372
-372 155 157 371 373
-373 374 156 158 372
-374 375 157 159 373
-375 374 376 158 160
-376 375 377 159 161
-377 376 378 160 162
-378 377 379 161 163
-379 378 380 162 164
-380 165 379 381 163
-381 166 380 382 164
-382 165 167 381 383
-383 166 168 382 384
-384 385 167 169 383
-385 386 168 170 384
-386 385 387 169 171
-387 386 388 170 172
-388 387 389 171 173
-389 388 390 172 174
-390 389 391 173 175
-391 176 390 392 174
-392 177 391 393 175
-393 176 178 392 394
-394 177 179 393 395
-395 396 178 180 394
-396 397 179 181 395
-397 396 398 180 182
-398 397 399 181 183
-399 398 400 182 184
-400 399 401 183 185
-401 400 402 184 186
-402 187 401 403 185
-403 188 402 404 186
-404 187 189 403 405
-405 188 190 404 406
-406 407 189 191 405
-407 408 190 192 406
-408 407 409 191 193
-409 408 410 192 194
-410 409 411 193 195
-411 410 412 194 196
-412 411 413 195 197
-413 198 412 414 196
-414 199 413 415 197
-415 198 200 414 416
-416 199 201 415 417
-417 418 200 202 416
-418 419 201 203 417
-419 418 420 202 204
-420 419 421 203 205
-421 420 422 204 206
-422 421 423 205 207
-423 422 424 206 208
-424 209 423 425 207
-425 210 424 426 208
-426 209 211 425 427
-427 210 212 426 428
-428 429 211 213 427
-429 430 212 214 428
-430 429 431 213 215
-431 430 432 214 216
-432 1 431 215 217
0