C4graphGraph forms for C4 [ 432, 3 ] = C_432(1,161)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 432, 3 ] = C_432(1,161).

(I) Following is a form readable by MAGMA:

g:=Graph<432|{ {2, 3}, {430, 431}, {428, 429}, {426, 427}, {424, 425}, {422, 423}, {420, 421}, {418, 419}, {416, 417}, {414, 415}, {412, 413}, {410, 411}, {408, 409}, {406, 407}, {404, 405}, {402, 403}, {400, 401}, {398, 399}, {396, 397}, {394, 395}, {392, 393}, {390, 391}, {388, 389}, {386, 387}, {384, 385}, {382, 383}, {380, 381}, {378, 379}, {376, 377}, {374, 375}, {372, 373}, {370, 371}, {368, 369}, {366, 367}, {364, 365}, {362, 363}, {360, 361}, {358, 359}, {356, 357}, {354, 355}, {352, 353}, {350, 351}, {348, 349}, {346, 347}, {344, 345}, {342, 343}, {340, 341}, {338, 339}, {336, 337}, {334, 335}, {332, 333}, {330, 331}, {328, 329}, {326, 327}, {324, 325}, {322, 323}, {320, 321}, {318, 319}, {316, 317}, {314, 315}, {312, 313}, {310, 311}, {308, 309}, {306, 307}, {304, 305}, {302, 303}, {300, 301}, {298, 299}, {296, 297}, {294, 295}, {292, 293}, {290, 291}, {288, 289}, {286, 287}, {284, 285}, {282, 283}, {280, 281}, {278, 279}, {276, 277}, {274, 275}, {272, 273}, {270, 271}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {116, 117}, {114, 115}, {112, 113}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {68, 69}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199}, {200, 201}, {202, 203}, {204, 205}, {206, 207}, {208, 209}, {210, 211}, {212, 213}, {214, 215}, {216, 217}, {1, 2}, {429, 430}, {425, 426}, {421, 422}, {417, 418}, {413, 414}, {409, 410}, {405, 406}, {401, 402}, {397, 398}, {393, 394}, {389, 390}, {385, 386}, {381, 382}, {377, 378}, {373, 374}, {369, 370}, {365, 366}, {361, 362}, {357, 358}, {353, 354}, {349, 350}, {345, 346}, {341, 342}, {337, 338}, {333, 334}, {329, 330}, {325, 326}, {321, 322}, {317, 318}, {313, 314}, {309, 310}, {305, 306}, {301, 302}, {297, 298}, {293, 294}, {289, 290}, {285, 286}, {281, 282}, {277, 278}, {273, 274}, {269, 270}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {221, 222}, {217, 218}, {113, 114}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {69, 70}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {201, 202}, {205, 206}, {209, 210}, {213, 214}, {3, 4}, {427, 428}, {419, 420}, {411, 412}, {403, 404}, {395, 396}, {387, 388}, {379, 380}, {371, 372}, {363, 364}, {355, 356}, {347, 348}, {339, 340}, {331, 332}, {323, 324}, {315, 316}, {307, 308}, {299, 300}, {291, 292}, {283, 284}, {275, 276}, {267, 268}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {219, 220}, {115, 116}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {59, 60}, {67, 68}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {203, 204}, {211, 212}, {7, 8}, {423, 424}, {407, 408}, {391, 392}, {375, 376}, {359, 360}, {343, 344}, {327, 328}, {311, 312}, {295, 296}, {279, 280}, {263, 264}, {247, 248}, {231, 232}, {103, 104}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {215, 216}, {15, 16}, {431, 432}, {399, 400}, {367, 368}, {335, 336}, {303, 304}, {271, 272}, {239, 240}, {111, 112}, {79, 80}, {47, 48}, {143, 144}, {175, 176}, {207, 208}, {31, 32}, {415, 416}, {351, 352}, {287, 288}, {223, 224}, {95, 96}, {159, 160}, {63, 64}, {319, 320}, {191, 192}, {2, 163}, {270, 431}, {268, 429}, {266, 427}, {264, 425}, {262, 423}, {260, 421}, {258, 419}, {256, 417}, {94, 255}, {92, 253}, {90, 251}, {88, 249}, {86, 247}, {84, 245}, {82, 243}, {80, 241}, {78, 239}, {76, 237}, {74, 235}, {72, 233}, {70, 231}, {4, 165}, {6, 167}, {8, 169}, {10, 171}, {12, 173}, {14, 175}, {16, 177}, {18, 179}, {20, 181}, {22, 183}, {24, 185}, {26, 187}, {28, 189}, {30, 191}, {64, 225}, {66, 227}, {68, 229}, {1, 162}, {269, 430}, {265, 426}, {261, 422}, {257, 418}, {93, 254}, {89, 250}, {85, 246}, {81, 242}, {77, 238}, {73, 234}, {5, 166}, {9, 170}, {13, 174}, {17, 178}, {21, 182}, {25, 186}, {29, 190}, {65, 226}, {69, 230}, {3, 164}, {267, 428}, {259, 420}, {91, 252}, {83, 244}, {75, 236}, {11, 172}, {19, 180}, {27, 188}, {67, 228}, {7, 168}, {263, 424}, {87, 248}, {71, 232}, {23, 184}, {15, 176}, {271, 432}, {79, 240}, {31, 192}, {63, 224}, {32, 193}, {34, 195}, {36, 197}, {38, 199}, {40, 201}, {42, 203}, {44, 205}, {46, 207}, {48, 209}, {50, 211}, {52, 213}, {54, 215}, {56, 217}, {58, 219}, {60, 221}, {62, 223}, {33, 194}, {37, 198}, {41, 202}, {45, 206}, {49, 210}, {53, 214}, {57, 218}, {61, 222}, {35, 196}, {43, 204}, {51, 212}, {59, 220}, {39, 200}, {55, 216}, {47, 208}, {383, 384}, {127, 128}, {16, 287}, {112, 383}, {96, 367}, {80, 351}, {32, 303}, {48, 319}, {64, 335}, {128, 399}, {144, 415}, {160, 431}, {1, 272}, {111, 382}, {109, 380}, {107, 378}, {105, 376}, {103, 374}, {101, 372}, {99, 370}, {97, 368}, {79, 350}, {77, 348}, {75, 346}, {73, 344}, {71, 342}, {69, 340}, {3, 274}, {5, 276}, {7, 278}, {9, 280}, {11, 282}, {13, 284}, {15, 286}, {33, 304}, {35, 306}, {37, 308}, {39, 310}, {41, 312}, {43, 314}, {45, 316}, {47, 318}, {65, 336}, {67, 338}, {129, 400}, {131, 402}, {133, 404}, {135, 406}, {137, 408}, {139, 410}, {141, 412}, {143, 414}, {161, 432}, {2, 273}, {110, 381}, {106, 377}, {102, 373}, {98, 369}, {78, 349}, {74, 345}, {70, 341}, {6, 277}, {10, 281}, {14, 285}, {34, 305}, {38, 309}, {42, 313}, {46, 317}, {66, 337}, {130, 401}, {134, 405}, {138, 409}, {142, 413}, {4, 275}, {108, 379}, {100, 371}, {76, 347}, {12, 283}, {36, 307}, {44, 315}, {68, 339}, {132, 403}, {140, 411}, {8, 279}, {104, 375}, {72, 343}, {40, 311}, {136, 407}, {17, 288}, {95, 366}, {93, 364}, {91, 362}, {89, 360}, {87, 358}, {85, 356}, {83, 354}, {81, 352}, {19, 290}, {21, 292}, {23, 294}, {25, 296}, {27, 298}, {29, 300}, {31, 302}, {145, 416}, {147, 418}, {149, 420}, {151, 422}, {153, 424}, {155, 426}, {157, 428}, {159, 430}, {18, 289}, {94, 365}, {90, 361}, {86, 357}, {82, 353}, {22, 293}, {26, 297}, {30, 301}, {146, 417}, {150, 421}, {154, 425}, {158, 429}, {20, 291}, {92, 363}, {84, 355}, {28, 299}, {148, 419}, {156, 427}, {24, 295}, {88, 359}, {152, 423}, {95, 256}, {255, 416}, {223, 384}, {127, 288}, {96, 257}, {254, 415}, {252, 413}, {250, 411}, {248, 409}, {246, 407}, {244, 405}, {242, 403}, {240, 401}, {238, 399}, {236, 397}, {234, 395}, {232, 393}, {230, 391}, {228, 389}, {226, 387}, {224, 385}, {114, 275}, {112, 273}, {110, 271}, {108, 269}, {106, 267}, {104, 265}, {102, 263}, {100, 261}, {98, 259}, {116, 277}, {118, 279}, {120, 281}, {122, 283}, {124, 285}, {126, 287}, {97, 258}, {253, 414}, {249, 410}, {245, 406}, {241, 402}, {237, 398}, {233, 394}, {229, 390}, {225, 386}, {113, 274}, {109, 270}, {105, 266}, {101, 262}, {117, 278}, {121, 282}, {125, 286}, {99, 260}, {251, 412}, {243, 404}, {235, 396}, {227, 388}, {115, 276}, {107, 268}, {123, 284}, {103, 264}, {247, 408}, {231, 392}, {119, 280}, {49, 320}, {51, 322}, {53, 324}, {55, 326}, {57, 328}, {59, 330}, {61, 332}, {63, 334}, {50, 321}, {54, 325}, {58, 329}, {62, 333}, {52, 323}, {60, 331}, {56, 327}, {239, 400}, {111, 272}, {128, 289}, {222, 383}, {220, 381}, {218, 379}, {216, 377}, {130, 291}, {132, 293}, {134, 295}, {136, 297}, {138, 299}, {140, 301}, {142, 303}, {144, 305}, {146, 307}, {148, 309}, {150, 311}, {152, 313}, {154, 315}, {156, 317}, {158, 319}, {192, 353}, {194, 355}, {196, 357}, {198, 359}, {200, 361}, {202, 363}, {204, 365}, {206, 367}, {208, 369}, {210, 371}, {212, 373}, {214, 375}, {129, 290}, {221, 382}, {217, 378}, {133, 294}, {137, 298}, {141, 302}, {145, 306}, {149, 310}, {153, 314}, {157, 318}, {193, 354}, {197, 358}, {201, 362}, {205, 366}, {209, 370}, {213, 374}, {131, 292}, {219, 380}, {139, 300}, {147, 308}, {155, 316}, {195, 356}, {203, 364}, {211, 372}, {135, 296}, {151, 312}, {199, 360}, {215, 376}, {1, 432}, {143, 304}, {207, 368}, {159, 320}, {191, 352}, {160, 321}, {162, 323}, {164, 325}, {166, 327}, {168, 329}, {170, 331}, {172, 333}, {174, 335}, {176, 337}, {178, 339}, {180, 341}, {182, 343}, {184, 345}, {186, 347}, {188, 349}, {190, 351}, {161, 322}, {165, 326}, {169, 330}, {173, 334}, {177, 338}, {181, 342}, {185, 346}, {189, 350}, {163, 324}, {171, 332}, {179, 340}, {187, 348}, {167, 328}, {183, 344}, {113, 384}, {115, 386}, {117, 388}, {119, 390}, {121, 392}, {123, 394}, {125, 396}, {127, 398}, {114, 385}, {118, 389}, {122, 393}, {126, 397}, {116, 387}, {124, 395}, {120, 391}, {255, 256}, {175, 336} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432)
b: (2, 272)(3, 111)(4, 382)(5, 221)(6, 60)(7, 331)(8, 170)(10, 280)(11, 119)(12, 390)(13, 229)(14, 68)(15, 339)(16, 178)(18, 288)(19, 127)(20, 398)(21, 237)(22, 76)(23, 347)(24, 186)(26, 296)(27, 135)(28, 406)(29, 245)(30, 84)(31, 355)(32, 194)(34, 304)(35, 143)(36, 414)(37, 253)(38, 92)(39, 363)(40, 202)(42, 312)(43, 151)(44, 422)(45, 261)(46, 100)(47, 371)(48, 210)(50, 320)(51, 159)(52, 430)(53, 269)(54, 108)(55, 379)(56, 218)(58, 328)(59, 167)(61, 277)(62, 116)(63, 387)(64, 226)(66, 336)(67, 175)(69, 285)(70, 124)(71, 395)(72, 234)(74, 344)(75, 183)(77, 293)(78, 132)(79, 403)(80, 242)(82, 352)(83, 191)(85, 301)(86, 140)(87, 411)(88, 250)(90, 360)(91, 199)(93, 309)(94, 148)(95, 419)(96, 258)(98, 368)(99, 207)(101, 317)(102, 156)(103, 427)(104, 266)(106, 376)(107, 215)(109, 325)(110, 164)(112, 274)(114, 384)(115, 223)(117, 333)(118, 172)(120, 282)(122, 392)(123, 231)(125, 341)(126, 180)(128, 290)(130, 400)(131, 239)(133, 349)(134, 188)(136, 298)(138, 408)(139, 247)(141, 357)(142, 196)(144, 306)(146, 416)(147, 255)(149, 365)(150, 204)(152, 314)(154, 424)(155, 263)(157, 373)(158, 212)(160, 322)(162, 432)(163, 271)(165, 381)(166, 220)(168, 330)(171, 279)(173, 389)(174, 228)(176, 338)(179, 287)(181, 397)(182, 236)(184, 346)(187, 295)(189, 405)(190, 244)(192, 354)(195, 303)(197, 413)(198, 252)(200, 362)(203, 311)(205, 421)(206, 260)(208, 370)(211, 319)(213, 429)(214, 268)(216, 378)(219, 327)(222, 276)(224, 386)(227, 335)(230, 284)(232, 394)(235, 343)(238, 292)(240, 402)(243, 351)(246, 300)(248, 410)(251, 359)(254, 308)(256, 418)(259, 367)(262, 316)(264, 426)(267, 375)(270, 324)(275, 383)(278, 332)(283, 391)(286, 340)(291, 399)(294, 348)(299, 407)(302, 356)(307, 415)(310, 364)(315, 423)(318, 372)(323, 431)(326, 380)(334, 388)(342, 396)(350, 404)(358, 412)(366, 420)(374, 428)
c: (2, 162)(3, 323)(4, 52)(5, 213)(6, 374)(7, 103)(8, 264)(9, 425)(10, 154)(11, 315)(12, 44)(13, 205)(14, 366)(15, 95)(16, 256)(17, 417)(18, 146)(19, 307)(20, 36)(21, 197)(22, 358)(23, 87)(24, 248)(25, 409)(26, 138)(27, 299)(29, 189)(30, 350)(31, 79)(32, 240)(33, 401)(34, 130)(35, 291)(37, 181)(38, 342)(39, 71)(40, 232)(41, 393)(42, 122)(43, 283)(45, 173)(46, 334)(47, 63)(48, 224)(49, 385)(50, 114)(51, 275)(53, 165)(54, 326)(56, 216)(57, 377)(58, 106)(59, 267)(60, 428)(61, 157)(62, 318)(64, 208)(65, 369)(66, 98)(67, 259)(68, 420)(69, 149)(70, 310)(72, 200)(73, 361)(74, 90)(75, 251)(76, 412)(77, 141)(78, 302)(80, 192)(81, 353)(83, 243)(84, 404)(85, 133)(86, 294)(88, 184)(89, 345)(91, 235)(92, 396)(93, 125)(94, 286)(96, 176)(97, 337)(99, 227)(100, 388)(101, 117)(102, 278)(104, 168)(105, 329)(107, 219)(108, 380)(110, 270)(111, 431)(112, 160)(113, 321)(115, 211)(116, 372)(118, 262)(119, 423)(120, 152)(121, 313)(123, 203)(124, 364)(126, 254)(127, 415)(128, 144)(129, 305)(131, 195)(132, 356)(134, 246)(135, 407)(137, 297)(139, 187)(140, 348)(142, 238)(143, 399)(145, 289)(147, 179)(148, 340)(150, 230)(151, 391)(153, 281)(155, 171)(156, 332)(158, 222)(159, 383)(161, 273)(164, 324)(166, 214)(167, 375)(169, 265)(170, 426)(172, 316)(174, 206)(175, 367)(177, 257)(178, 418)(180, 308)(182, 198)(183, 359)(185, 249)(186, 410)(188, 300)(191, 351)(193, 241)(194, 402)(196, 292)(199, 343)(201, 233)(202, 394)(204, 284)(207, 335)(209, 225)(210, 386)(212, 276)(215, 327)(218, 378)(220, 268)(221, 429)(223, 319)(226, 370)(228, 260)(229, 421)(231, 311)(234, 362)(236, 252)(237, 413)(239, 303)(242, 354)(245, 405)(247, 295)(250, 346)(253, 397)(255, 287)(258, 338)(261, 389)(263, 279)(266, 330)(269, 381)(272, 432)(274, 322)(277, 373)(280, 424)(282, 314)(285, 365)(288, 416)(290, 306)(293, 357)(296, 408)(301, 349)(304, 400)(309, 341)(312, 392)(317, 333)(320, 384)(328, 376)(331, 427)(336, 368)(339, 419)(344, 360)(347, 411)(355, 403)(363, 395)(371, 387)(382, 430)(390, 422)(398, 414)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 432, 3 ]
432
-1 2 432 162 272
-2 1 3 163 273
-3 2 4 164 274
-4 165 275 3 5
-5 166 276 4 6
-6 167 277 5 7
-7 168 278 6 8
-8 169 279 7 9
-9 170 280 8 10
-10 11 171 281 9
-11 12 172 282 10
-12 11 13 173 283
-13 12 14 174 284
-14 13 15 175 285
-15 176 286 14 16
-16 177 287 15 17
-17 178 288 16 18
-18 179 289 17 19
-19 180 290 18 20
-20 181 291 19 21
-21 22 182 292 20
-22 23 183 293 21
-23 22 24 184 294
-24 23 25 185 295
-25 24 26 186 296
-26 187 297 25 27
-27 188 298 26 28
-28 189 299 27 29
-29 190 300 28 30
-30 191 301 29 31
-31 192 302 30 32
-32 33 193 303 31
-33 34 194 304 32
-34 33 35 195 305
-35 34 36 196 306
-36 35 37 197 307
-37 198 308 36 38
-38 199 309 37 39
-39 200 310 38 40
-40 201 311 39 41
-41 202 312 40 42
-42 203 313 41 43
-43 44 204 314 42
-44 45 205 315 43
-45 44 46 206 316
-46 45 47 207 317
-47 46 48 208 318
-48 209 319 47 49
-49 210 320 48 50
-50 211 321 49 51
-51 212 322 50 52
-52 213 323 51 53
-53 214 324 52 54
-54 55 215 325 53
-55 56 216 326 54
-56 55 57 217 327
-57 56 58 218 328
-58 57 59 219 329
-59 220 330 58 60
-60 221 331 59 61
-61 222 332 60 62
-62 223 333 61 63
-63 224 334 62 64
-64 225 335 63 65
-65 66 226 336 64
-66 67 227 337 65
-67 66 68 228 338
-68 67 69 229 339
-69 68 70 230 340
-70 231 341 69 71
-71 232 342 70 72
-72 233 343 71 73
-73 234 344 72 74
-74 235 345 73 75
-75 236 346 74 76
-76 77 237 347 75
-77 78 238 348 76
-78 77 79 239 349
-79 78 80 240 350
-80 79 81 241 351
-81 242 352 80 82
-82 243 353 81 83
-83 244 354 82 84
-84 245 355 83 85
-85 246 356 84 86
-86 247 357 85 87
-87 88 248 358 86
-88 89 249 359 87
-89 88 90 250 360
-90 89 91 251 361
-91 90 92 252 362
-92 253 363 91 93
-93 254 364 92 94
-94 255 365 93 95
-95 256 366 94 96
-96 257 367 95 97
-97 258 368 96 98
-98 99 259 369 97
-99 100 260 370 98
-100 99 101 261 371
-101 100 102 262 372
-102 101 103 263 373
-103 264 374 102 104
-104 265 375 103 105
-105 266 376 104 106
-106 267 377 105 107
-107 268 378 106 108
-108 269 379 107 109
-109 110 270 380 108
-110 111 271 381 109
-111 110 112 272 382
-112 111 113 273 383
-113 112 114 274 384
-114 275 385 113 115
-115 276 386 114 116
-116 277 387 115 117
-117 278 388 116 118
-118 279 389 117 119
-119 280 390 118 120
-120 121 281 391 119
-121 122 282 392 120
-122 121 123 283 393
-123 122 124 284 394
-124 123 125 285 395
-125 286 396 124 126
-126 287 397 125 127
-127 288 398 126 128
-128 289 399 127 129
-129 290 400 128 130
-130 291 401 129 131
-131 132 292 402 130
-132 133 293 403 131
-133 132 134 294 404
-134 133 135 295 405
-135 134 136 296 406
-136 297 407 135 137
-137 298 408 136 138
-138 299 409 137 139
-139 300 410 138 140
-140 301 411 139 141
-141 302 412 140 142
-142 143 303 413 141
-143 144 304 414 142
-144 143 145 305 415
-145 144 146 306 416
-146 145 147 307 417
-147 308 418 146 148
-148 309 419 147 149
-149 310 420 148 150
-150 311 421 149 151
-151 312 422 150 152
-152 313 423 151 153
-153 154 314 424 152
-154 155 315 425 153
-155 154 156 316 426
-156 155 157 317 427
-157 156 158 318 428
-158 319 429 157 159
-159 320 430 158 160
-160 321 431 159 161
-161 322 432 160 162
-162 1 323 161 163
-163 2 324 162 164
-164 165 3 325 163
-165 166 4 326 164
-166 165 167 5 327
-167 166 168 6 328
-168 167 169 7 329
-169 330 168 170 8
-170 331 169 171 9
-171 332 170 172 10
-172 11 333 171 173
-173 12 334 172 174
-174 13 335 173 175
-175 176 14 336 174
-176 177 15 337 175
-177 176 178 16 338
-178 177 179 17 339
-179 178 180 18 340
-180 341 179 181 19
-181 342 180 182 20
-182 343 181 183 21
-183 22 344 182 184
-184 23 345 183 185
-185 24 346 184 186
-186 187 25 347 185
-187 188 26 348 186
-188 187 189 27 349
-189 188 190 28 350
-190 189 191 29 351
-191 352 190 192 30
-192 353 191 193 31
-193 354 192 194 32
-194 33 355 193 195
-195 34 356 194 196
-196 35 357 195 197
-197 198 36 358 196
-198 199 37 359 197
-199 198 200 38 360
-200 199 201 39 361
-201 200 202 40 362
-202 363 201 203 41
-203 364 202 204 42
-204 365 203 205 43
-205 44 366 204 206
-206 45 367 205 207
-207 46 368 206 208
-208 209 47 369 207
-209 210 48 370 208
-210 209 211 49 371
-211 210 212 50 372
-212 211 213 51 373
-213 374 212 214 52
-214 375 213 215 53
-215 376 214 216 54
-216 55 377 215 217
-217 56 378 216 218
-218 57 379 217 219
-219 220 58 380 218
-220 221 59 381 219
-221 220 222 60 382
-222 221 223 61 383
-223 222 224 62 384
-224 385 223 225 63
-225 386 224 226 64
-226 387 225 227 65
-227 66 388 226 228
-228 67 389 227 229
-229 68 390 228 230
-230 231 69 391 229
-231 232 70 392 230
-232 231 233 71 393
-233 232 234 72 394
-234 233 235 73 395
-235 396 234 236 74
-236 397 235 237 75
-237 398 236 238 76
-238 77 399 237 239
-239 78 400 238 240
-240 79 401 239 241
-241 242 80 402 240
-242 243 81 403 241
-243 242 244 82 404
-244 243 245 83 405
-245 244 246 84 406
-246 407 245 247 85
-247 408 246 248 86
-248 409 247 249 87
-249 88 410 248 250
-250 89 411 249 251
-251 90 412 250 252
-252 253 91 413 251
-253 254 92 414 252
-254 253 255 93 415
-255 254 256 94 416
-256 255 257 95 417
-257 418 256 258 96
-258 419 257 259 97
-259 420 258 260 98
-260 99 421 259 261
-261 100 422 260 262
-262 101 423 261 263
-263 264 102 424 262
-264 265 103 425 263
-265 264 266 104 426
-266 265 267 105 427
-267 266 268 106 428
-268 429 267 269 107
-269 430 268 270 108
-270 431 269 271 109
-271 110 432 270 272
-272 1 111 271 273
-273 2 112 272 274
-274 275 3 113 273
-275 276 4 114 274
-276 275 277 5 115
-277 276 278 6 116
-278 277 279 7 117
-279 278 280 8 118
-280 279 281 9 119
-281 280 282 10 120
-282 11 121 281 283
-283 12 122 282 284
-284 13 123 283 285
-285 286 14 124 284
-286 287 15 125 285
-287 286 288 16 126
-288 287 289 17 127
-289 288 290 18 128
-290 289 291 19 129
-291 290 292 20 130
-292 291 293 21 131
-293 22 132 292 294
-294 23 133 293 295
-295 24 134 294 296
-296 297 25 135 295
-297 298 26 136 296
-298 297 299 27 137
-299 298 300 28 138
-300 299 301 29 139
-301 300 302 30 140
-302 301 303 31 141
-303 302 304 32 142
-304 33 143 303 305
-305 34 144 304 306
-306 35 145 305 307
-307 308 36 146 306
-308 309 37 147 307
-309 308 310 38 148
-310 309 311 39 149
-311 310 312 40 150
-312 311 313 41 151
-313 312 314 42 152
-314 313 315 43 153
-315 44 154 314 316
-316 45 155 315 317
-317 46 156 316 318
-318 319 47 157 317
-319 320 48 158 318
-320 319 321 49 159
-321 320 322 50 160
-322 321 323 51 161
-323 322 324 52 162
-324 323 325 53 163
-325 324 326 54 164
-326 55 165 325 327
-327 56 166 326 328
-328 57 167 327 329
-329 330 58 168 328
-330 331 59 169 329
-331 330 332 60 170
-332 331 333 61 171
-333 332 334 62 172
-334 333 335 63 173
-335 334 336 64 174
-336 335 337 65 175
-337 66 176 336 338
-338 67 177 337 339
-339 68 178 338 340
-340 341 69 179 339
-341 342 70 180 340
-342 341 343 71 181
-343 342 344 72 182
-344 343 345 73 183
-345 344 346 74 184
-346 345 347 75 185
-347 346 348 76 186
-348 77 187 347 349
-349 78 188 348 350
-350 79 189 349 351
-351 352 80 190 350
-352 353 81 191 351
-353 352 354 82 192
-354 353 355 83 193
-355 354 356 84 194
-356 355 357 85 195
-357 356 358 86 196
-358 357 359 87 197
-359 88 198 358 360
-360 89 199 359 361
-361 90 200 360 362
-362 363 91 201 361
-363 364 92 202 362
-364 363 365 93 203
-365 364 366 94 204
-366 365 367 95 205
-367 366 368 96 206
-368 367 369 97 207
-369 368 370 98 208
-370 99 209 369 371
-371 100 210 370 372
-372 101 211 371 373
-373 374 102 212 372
-374 375 103 213 373
-375 374 376 104 214
-376 375 377 105 215
-377 376 378 106 216
-378 377 379 107 217
-379 378 380 108 218
-380 379 381 109 219
-381 110 220 380 382
-382 111 221 381 383
-383 112 222 382 384
-384 385 113 223 383
-385 386 114 224 384
-386 385 387 115 225
-387 386 388 116 226
-388 387 389 117 227
-389 388 390 118 228
-390 389 391 119 229
-391 390 392 120 230
-392 121 231 391 393
-393 122 232 392 394
-394 123 233 393 395
-395 396 124 234 394
-396 397 125 235 395
-397 396 398 126 236
-398 397 399 127 237
-399 398 400 128 238
-400 399 401 129 239
-401 400 402 130 240
-402 401 403 131 241
-403 132 242 402 404
-404 133 243 403 405
-405 134 244 404 406
-406 407 135 245 405
-407 408 136 246 406
-408 407 409 137 247
-409 408 410 138 248
-410 409 411 139 249
-411 410 412 140 250
-412 411 413 141 251
-413 412 414 142 252
-414 143 253 413 415
-415 144 254 414 416
-416 145 255 415 417
-417 418 146 256 416
-418 419 147 257 417
-419 418 420 148 258
-420 419 421 149 259
-421 420 422 150 260
-422 421 423 151 261
-423 422 424 152 262
-424 423 425 153 263
-425 154 264 424 426
-426 155 265 425 427
-427 156 266 426 428
-428 429 157 267 427
-429 430 158 268 428
-430 429 431 159 269
-431 430 432 160 270
-432 1 431 161 271
0

**************