[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 432, 35 ]. See Glossary for some
detail.
PL(MSY( 6, 36, 17, 18)) = PL(MSY( 6, 36, 19, 18)) = PL(MSY( 18, 12, 5,
6))
= PL(MSY( 18, 12, 7, 6)) = PL(MC3( 6, 36, 1, 35, 17, 18, 1), [12^18,
36^6]) = PL(MC3( 6, 36, 1, 35, 19, 18, 1), [12^18, 36^6])
= PL(MC3( 18, 12, 1, 11, 5, 6, 1), [12^18, 36^6]) = PL(MC3( 18, 12, 1, 11,
7, 6, 1), [12^18, 36^6]) = PL(MBr( 18, 12; 5))
= PL(MBr( 6, 36; 17))
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 1 | 0 1 | - | - | - | - |
2 | - | - | - | - | - | - | 17 | 0 | 0 | - | - | 0 |
3 | - | - | - | - | - | - | 19 | 0 | 0 | - | - | 2 |
4 | - | - | - | - | - | - | - | - | 0 | 0 | 0 | 20 |
5 | - | - | - | - | - | - | - | - | 0 | 0 | 34 | 18 |
6 | - | - | - | - | - | - | - | - | - | 0 35 | 16 17 | - |
7 | 0 35 | 19 | 17 | - | - | - | - | - | - | - | - | - |
8 | 0 35 | 0 | 0 | - | - | - | - | - | - | - | - | - |
9 | - | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - |
10 | - | - | - | 0 | 0 | 0 1 | - | - | - | - | - | - |
11 | - | - | - | 0 | 2 | 19 20 | - | - | - | - | - | - |
12 | - | 0 | 34 | 16 | 18 | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 1 | 0 1 | - | - | - | - |
2 | - | - | - | - | - | - | - | 0 17 | 0 17 | - | - | - |
3 | - | - | - | - | - | - | - | - | 0 1 | 0 1 | - | - |
4 | - | - | - | - | - | - | - | - | - | 0 17 | 0 17 | - |
5 | - | - | - | - | - | - | - | - | - | - | 0 1 | 0 1 |
6 | - | - | - | - | - | - | 0 17 | - | - | - | - | 18 35 |
7 | 0 35 | - | - | - | - | 0 19 | - | - | - | - | - | - |
8 | 0 35 | 0 19 | - | - | - | - | - | - | - | - | - | - |
9 | - | 0 19 | 0 35 | - | - | - | - | - | - | - | - | - |
10 | - | - | 0 35 | 0 19 | - | - | - | - | - | - | - | - |
11 | - | - | - | 0 19 | 0 35 | - | - | - | - | - | - | - |
12 | - | - | - | - | 0 35 | 1 18 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 1 | 0 | - | - | - | 0 |
2 | - | - | - | - | - | - | 0 | 0 17 | 0 | - | - | - |
3 | - | - | - | - | - | - | - | 17 | 0 35 | 0 | - | - |
4 | - | - | - | - | - | - | - | - | 35 | 0 17 | 0 | - |
5 | - | - | - | - | - | - | - | - | - | 17 | 0 35 | 13 |
6 | - | - | - | - | - | - | 31 | - | - | - | 35 | 13 30 |
7 | 0 35 | 0 | - | - | - | 5 | - | - | - | - | - | - |
8 | 0 | 0 19 | 19 | - | - | - | - | - | - | - | - | - |
9 | - | 0 | 0 1 | 1 | - | - | - | - | - | - | - | - |
10 | - | - | 0 | 0 19 | 19 | - | - | - | - | - | - | - |
11 | - | - | - | 0 | 0 1 | 1 | - | - | - | - | - | - |
12 | 0 | - | - | - | 23 | 6 23 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | - | 0 | 0 | - |
2 | - | - | - | - | - | - | 0 | 0 | - | 1 | - | 0 |
3 | - | - | - | - | - | - | 19 | - | 0 | 1 | - | 0 |
4 | - | - | - | - | - | - | 19 | - | 0 | - | 29 | 1 |
5 | - | - | - | - | - | - | - | 11 | 19 | - | 29 | 1 |
6 | - | - | - | - | - | - | - | 11 | 19 | 30 | 30 | - |
7 | 0 | 0 | 17 | 17 | - | - | - | - | - | - | - | - |
8 | 0 | 0 | - | - | 25 | 25 | - | - | - | - | - | - |
9 | - | - | 0 | 0 | 17 | 17 | - | - | - | - | - | - |
10 | 0 | 35 | 35 | - | - | 6 | - | - | - | - | - | - |
11 | 0 | - | - | 7 | 7 | 6 | - | - | - | - | - | - |
12 | - | 0 | 0 | 35 | 35 | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | - | - | 0 | 0 |
2 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | - | - |
3 | - | - | - | - | - | - | - | - | 0 | 0 | 15 | 15 |
4 | - | - | - | - | - | - | - | 0 | 1 | 18 | 34 | - |
5 | - | - | - | - | - | - | 19 | 0 | 1 | - | - | 18 |
6 | - | - | - | - | - | - | 19 | - | - | 21 | 1 | 18 |
7 | 0 | 0 | - | - | 17 | 17 | - | - | - | - | - | - |
8 | 0 | 0 | - | 0 | 0 | - | - | - | - | - | - | - |
9 | - | 0 | 0 | 35 | 35 | - | - | - | - | - | - | - |
10 | - | 0 | 0 | 18 | - | 15 | - | - | - | - | - | - |
11 | 0 | - | 21 | 2 | - | 35 | - | - | - | - | - | - |
12 | 0 | - | 21 | - | 18 | 18 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | - | 0 | 0 | - |
2 | - | - | - | - | - | - | 0 | 0 | - | 34 | 34 | - |
3 | - | - | - | - | - | - | - | 0 | 0 | - | 16 | 0 |
4 | - | - | - | - | - | - | - | 0 | 0 | - | 18 | 2 |
5 | - | - | - | - | - | - | 1 | - | 0 | 17 | - | 20 |
6 | - | - | - | - | - | - | 35 | - | 0 | 17 | - | 18 |
7 | 0 | 0 | - | - | 35 | 1 | - | - | - | - | - | - |
8 | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | - |
9 | - | - | 0 | 0 | 0 | 0 | - | - | - | - | - | - |
10 | 0 | 2 | - | - | 19 | 19 | - | - | - | - | - | - |
11 | 0 | 2 | 20 | 18 | - | - | - | - | - | - | - | - |
12 | - | - | 0 | 34 | 16 | 18 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | 0 | - | 0 | 0 | - |
2 | - | - | - | - | - | - | 0 | 0 | - | 10 | 10 | - |
3 | - | - | - | - | - | - | - | 0 | 0 | - | 28 | 0 |
4 | - | - | - | - | - | - | - | 0 | 0 | - | 18 | 26 |
5 | - | - | - | - | - | - | 9 | - | 0 | 27 | - | 8 |
6 | - | - | - | - | - | - | 9 | - | 0 | 1 | - | 18 |
7 | 0 | 0 | - | - | 27 | 27 | - | - | - | - | - | - |
8 | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - | - |
9 | - | - | 0 | 0 | 0 | 0 | - | - | - | - | - | - |
10 | 0 | 26 | - | - | 9 | 35 | - | - | - | - | - | - |
11 | 0 | 26 | 8 | 18 | - | - | - | - | - | - | - | - |
12 | - | - | 0 | 10 | 28 | 18 | - | - | - | - | - | - |