[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 432, 40 ]. See Glossary for some
detail.
PL(MC3( 6, 36, 1, 17, 19, 0, 1), [6^36, 18^12]) = PL(MC3( 18, 12, 1, 5,
7, 0, 1), [6^36, 18^12]) = PL(ATD[ 12, 2]#DCyc[ 9])
= PL(ATD[ 12, 2]#DCyc[ 18]) = PL(ATD[ 12, 2]#ATD[ 36, 11]) = PL(ATD[ 36,
11]#DCyc[ 3])
= PL(ATD[ 36, 11]#DCyc[ 6]) = PL(CSI(W( 6, 2)[ 6^ 4], 9)) = PL(CSI(W( 6,
2)[ 6^ 4], 18))
= BGCG(W( 6, 2), C_ 18, 6') = PL(CSI(W( 18, 2)[ 18^ 4], 3)) = PL(CSI(W( 18,
2)[ 18^ 4], 6))
= BGCG(W( 18, 2), C_ 6, 6')
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | - |
| 2 | - | - | - | - | - | - | 0 | 0 | - | 0 | - | 0 |
| 3 | - | - | - | - | - | - | - | - | 0 | 1 | 0 | 17 |
| 4 | - | - | - | - | - | - | - | - | 1 | 0 | 17 | 0 |
| 5 | - | - | - | - | - | - | 19 | 35 | - | 1 | - | 17 |
| 6 | - | - | - | - | - | - | 19 | 35 | 1 | - | 17 | - |
| 7 | 0 | 0 | - | - | 17 | 17 | - | - | - | - | - | - |
| 8 | 0 | 0 | - | - | 1 | 1 | - | - | - | - | - | - |
| 9 | 0 | - | 0 | 35 | - | 35 | - | - | - | - | - | - |
| 10 | - | 0 | 35 | 0 | 35 | - | - | - | - | - | - | - |
| 11 | 0 | - | 0 | 19 | - | 19 | - | - | - | - | - | - |
| 12 | - | 0 | 19 | 0 | 19 | - | - | - | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | - |
| 2 | - | - | - | - | - | - | 0 | 0 | - | 0 | - | 0 |
| 3 | - | - | - | - | - | - | - | - | 0 1 | - | 0 17 | - |
| 4 | - | - | - | - | - | - | - | - | - | 0 35 | - | 16 35 |
| 5 | - | - | - | - | - | - | 19 | 35 | 1 | - | 17 | - |
| 6 | - | - | - | - | - | - | 0 | 16 | - | 18 | - | 34 |
| 7 | 0 | 0 | - | - | 17 | 0 | - | - | - | - | - | - |
| 8 | 0 | 0 | - | - | 1 | 20 | - | - | - | - | - | - |
| 9 | 0 | - | 0 35 | - | 35 | - | - | - | - | - | - | - |
| 10 | - | 0 | - | 0 1 | - | 18 | - | - | - | - | - | - |
| 11 | 0 | - | 0 19 | - | 19 | - | - | - | - | - | - | - |
| 12 | - | 0 | - | 1 20 | - | 2 | - | - | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | - | - | - | - | - | 0 | 0 | - | 0 1 |
| 2 | - | - | - | - | - | - | - | - | 0 17 | - | 0 | 0 |
| 3 | - | - | - | - | - | - | - | 0 | 16 | - | 34 35 | - |
| 4 | - | - | - | - | - | - | 0 | 0 17 | - | - | 34 | - |
| 5 | - | - | - | - | - | - | 0 | - | - | 0 19 | - | 1 |
| 6 | - | - | - | - | - | - | 19 20 | 1 | - | 2 | - | - |
| 7 | - | - | - | 0 | 0 | 16 17 | - | - | - | - | - | - |
| 8 | - | - | 0 | 0 19 | - | 35 | - | - | - | - | - | - |
| 9 | 0 | 0 19 | 20 | - | - | - | - | - | - | - | - | - |
| 10 | 0 | - | - | - | 0 17 | 34 | - | - | - | - | - | - |
| 11 | - | 0 | 1 2 | 2 | - | - | - | - | - | - | - | - |
| 12 | 0 35 | 0 | - | - | 35 | - | - | - | - | - | - | - |