[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 432, 41 ]. See Glossary for some
detail.
PL(MC3( 18, 12, 1, 7, 5, 0, 1), [4^54, 18^12]) = PL(ATD[ 6, 1]#DCyc[
18]) = PL(ATD[ 6, 1]#ATD[ 54, 8])
= PL(ATD[ 12, 5]#DCyc[ 9]) = PL(ATD[ 12, 5]#DCyc[ 18]) = PL(ATD[ 12,
5]#ATD[ 27, 4])
= PL(ATD[ 12, 5]#ATD[ 54, 8]) = PL(ATD[ 27, 4]#DCyc[ 4]) = PL(ATD[ 54,
8]#DCyc[ 4])
= XI(Rmap(216, 60) { 6, 36| 4}_ 18) = PL(CSI(Octahedron[ 4^ 3], 18)) =
PL(CSI(W( 6, 2)[ 4^ 6], 9))
= PL(CSI(W( 6, 2)[ 4^ 6], 18)) = BGCG(W( 6, 2), C_ 18, {1, 1', 2', 3', 4',
5'}) = PL(CSI(DW( 9, 3)[ 18^ 3], 4))
= PL(CS(DW( 18, 3)[ 18^ 6], 0)) = BGCG(DW( 18, 3), C_ 4, {3', 4, 4'}) =
BGCG(UG(ATD[216,68]); K1;1)
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | 0 1 | - | - | 0 19 |
2 | - | - | - | - | - | - | - | 0 | 0 | - | 0 | 0 |
3 | - | - | - | - | - | - | - | 28 29 | - | - | 10 29 | - |
4 | - | - | - | - | - | - | 0 | 28 | - | 0 | 10 | - |
5 | - | - | - | - | - | - | 30 | - | 1 | 12 | - | 19 |
6 | - | - | - | - | - | - | 28 29 | - | - | 10 29 | - | - |
7 | - | - | - | 0 | 6 | 7 8 | - | - | - | - | - | - |
8 | - | 0 | 7 8 | 8 | - | - | - | - | - | - | - | - |
9 | 0 35 | 0 | - | - | 35 | - | - | - | - | - | - | - |
10 | - | - | - | 0 | 24 | 7 26 | - | - | - | - | - | - |
11 | - | 0 | 7 26 | 26 | - | - | - | - | - | - | - | - |
12 | 0 17 | 0 | - | - | 17 | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 9 | 0 | - | 0 | - | - |
2 | - | - | - | - | - | - | 1 28 | 0 | - | 0 | - | - |
3 | - | - | - | - | - | - | - | 22 | 0 | 4 | 0 | - |
4 | - | - | - | - | - | - | - | 14 | 0 | 32 | 0 | - |
5 | - | - | - | - | - | - | - | - | 22 | - | 4 | 0 9 |
6 | - | - | - | - | - | - | - | - | 14 | - | 32 | 0 9 |
7 | 0 27 | 8 35 | - | - | - | - | - | - | - | - | - | - |
8 | 0 | 0 | 14 | 22 | - | - | - | - | - | - | - | - |
9 | - | - | 0 | 0 | 14 | 22 | - | - | - | - | - | - |
10 | 0 | 0 | 32 | 4 | - | - | - | - | - | - | - | - |
11 | - | - | 0 | 0 | 32 | 4 | - | - | - | - | - | - |
12 | - | - | - | - | 0 27 | 0 27 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | 0 | 0 | - |
2 | - | - | - | - | - | - | 20 | - | 0 | 20 | 0 | - |
3 | - | - | - | - | - | - | - | 0 | 26 | - | 8 | 0 |
4 | - | - | - | - | - | - | - | 0 | 10 | - | 28 | 0 |
5 | - | - | - | - | - | - | 1 | 26 | - | 19 | - | 8 |
6 | - | - | - | - | - | - | 1 | 10 | - | 19 | - | 28 |
7 | 0 | 16 | - | - | 35 | 35 | - | - | - | - | - | - |
8 | - | - | 0 | 0 | 10 | 26 | - | - | - | - | - | - |
9 | 0 | 0 | 10 | 26 | - | - | - | - | - | - | - | - |
10 | 0 | 16 | - | - | 17 | 17 | - | - | - | - | - | - |
11 | 0 | 0 | 28 | 8 | - | - | - | - | - | - | - | - |
12 | - | - | 0 | 0 | 28 | 8 | - | - | - | - | - | - |