C4graphConstructions for C4[ 432, 41 ] = PL(MC3(18,12,1,7,5,0,1),[4^54,18^12])

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 432, 41 ]. See Glossary for some detail.

PL(MC3( 18, 12, 1, 7, 5, 0, 1), [4^54, 18^12]) = PL(ATD[ 6, 1]#DCyc[ 18]) = PL(ATD[ 6, 1]#ATD[ 54, 8])

      = PL(ATD[ 12, 5]#DCyc[ 9]) = PL(ATD[ 12, 5]#DCyc[ 18]) = PL(ATD[ 12, 5]#ATD[ 27, 4])

      = PL(ATD[ 12, 5]#ATD[ 54, 8]) = PL(ATD[ 27, 4]#DCyc[ 4]) = PL(ATD[ 54, 8]#DCyc[ 4])

      = XI(Rmap(216, 60) { 6, 36| 4}_ 18) = PL(CSI(Octahedron[ 4^ 3], 18)) = PL(CSI(W( 6, 2)[ 4^ 6], 9))

      = PL(CSI(W( 6, 2)[ 4^ 6], 18)) = BGCG(W( 6, 2), C_ 18, {1, 1', 2', 3', 4', 5'}) = PL(CSI(DW( 9, 3)[ 18^ 3], 4))

      = PL(CS(DW( 18, 3)[ 18^ 6], 0)) = BGCG(DW( 18, 3), C_ 4, {3', 4, 4'}) = BGCG(UG(ATD[216,68]); K1;1)

     

Cyclic coverings

mod 36:
123456789 101112
1 - - - - - - - - 0 1 - - 0 19
2 - - - - - - - 0 0 - 0 0
3 - - - - - - - 28 29 - - 10 29 -
4 - - - - - - 0 28 - 0 10 -
5 - - - - - - 30 - 1 12 - 19
6 - - - - - - 28 29 - - 10 29 - -
7 - - - 0 6 7 8 - - - - - -
8 - 0 7 8 8 - - - - - - - -
9 0 35 0 - - 35 - - - - - - -
10 - - - 0 24 7 26 - - - - - -
11 - 0 7 26 26 - - - - - - - -
12 0 17 0 - - 17 - - - - - - -

mod 36:
123456789 101112
1 - - - - - - 0 9 0 - 0 - -
2 - - - - - - 1 28 0 - 0 - -
3 - - - - - - - 22 0 4 0 -
4 - - - - - - - 14 0 32 0 -
5 - - - - - - - - 22 - 4 0 9
6 - - - - - - - - 14 - 32 0 9
7 0 27 8 35 - - - - - - - - - -
8 0 0 14 22 - - - - - - - -
9 - - 0 0 14 22 - - - - - -
10 0 0 32 4 - - - - - - - -
11 - - 0 0 32 4 - - - - - -
12 - - - - 0 27 0 27 - - - - - -

mod 36:
123456789 101112
1 - - - - - - 0 - 0 0 0 -
2 - - - - - - 20 - 0 20 0 -
3 - - - - - - - 0 26 - 8 0
4 - - - - - - - 0 10 - 28 0
5 - - - - - - 1 26 - 19 - 8
6 - - - - - - 1 10 - 19 - 28
7 0 16 - - 35 35 - - - - - -
8 - - 0 0 10 26 - - - - - -
9 0 0 10 26 - - - - - - - -
10 0 16 - - 17 17 - - - - - -
11 0 0 28 8 - - - - - - - -
12 - - 0 0 28 8 - - - - - -