[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 432, 46 ]. See Glossary for some
detail.
CPM( 3, 2, 24, 1) = CPM( 6, 2, 24, 1) = AMC( 48, 3, [ 0. 1: 2.
0])
= UG(ATD[432, 96]) = UG(ATD[432, 97]) = UG(ATD[432, 98])
= ATD[ 9, 1]#ATD[ 24, 3] = ATD[ 9, 1]#ATD[ 72, 17] = ATD[ 12,
2]#ATD[ 72, 17]
= ATD[ 18, 1]#ATD[ 24, 3] = ATD[ 18, 1]#ATD[ 72, 17] = ATD[ 24,
3]#ATD[ 36, 8]
= ATD[ 24, 3]#ATD[ 72, 17] = ATD[ 36, 8]#ATD[ 72, 17] = ATD[ 72,
17]#DCyc[ 3]
= ATD[ 72, 17]#DCyc[ 6] = ATD[ 72, 17]#ATD[ 72, 17] = UG(Rmap(864, 81) {
48, 4| 6}_ 48)
= UG(Rmap(864, 86) { 48, 4| 6}_ 48) = MG(Rmap(432,127) { 6, 48| 6}_ 48) =
DG(Rmap(432,127) { 6, 48| 6}_ 48)
= MG(Rmap(432,129) { 6, 48| 6}_ 48) = DG(Rmap(432,129) { 6, 48| 6}_ 48) =
DG(Rmap(432,133) { 48, 6| 6}_ 48)
= DG(Rmap(432,137) { 48, 6| 6}_ 48) = BGCG(DW( 3, 3), C_ 24, 1) = BGCG(DW(
24, 3), C_ 3, 3)
= BGCG(CPM( 3, 2, 12, 1); K1;{8, 10}) = AT[432, 6]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 | - | 0 | 0 | - | 0 |
2 | - | - | 0 | - | 0 | - | 14 | 0 | - |
3 | - | 0 | - | 1 | 45 | - | - | 13 | - |
4 | 0 | - | 47 | - | 31 | 29 | - | - | - |
5 | - | 0 | 3 | 17 | - | - | 1 | - | - |
6 | 0 | - | - | 19 | - | - | - | 15 | 3 |
7 | 0 | 34 | - | - | 47 | - | - | - | 19 |
8 | - | 0 | 35 | - | - | 33 | - | - | 17 |
9 | 0 | - | - | - | - | 45 | 29 | 31 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | - | - | 0 | 0 |
2 | 0 | - | 33 | - | - | - | 33 | - | 1 |
3 | - | 15 | - | 19 | 43 | - | 1 | - | - |
4 | 0 | - | 29 | - | 25 | - | - | 47 | - |
5 | - | - | 5 | 23 | - | 28 | - | 19 | - |
6 | - | - | - | - | 20 | - | 22 | 38 | 42 |
7 | - | 15 | 47 | - | - | 26 | - | - | 19 |
8 | 0 | - | - | 1 | 29 | 10 | - | - | - |
9 | 0 | 47 | - | - | - | 6 | 29 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | - | 0 | 0 | - |
2 | 0 | - | - | 1 | 33 | 33 | - | - | - |
3 | - | - | 1 47 | - | - | - | 20 | 24 | - |
4 | 0 | 47 | - | - | 29 | - | - | - | 35 |
5 | - | 15 | - | 19 | 1 47 | - | - | - | - |
6 | - | 15 | - | - | - | - | - | 19 | 5 7 |
7 | 0 | - | 28 | - | - | - | - | 1 | 39 |
8 | 0 | - | 24 | - | - | 29 | 47 | - | - |
9 | - | - | - | 13 | - | 41 43 | 9 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 | - | - | 0 46 | - | 0 |
2 | - | 1 47 | - | - | 0 | - | - | 0 | - |
3 | - | - | 1 47 | - | 3 | - | 15 | - | - |
4 | 0 | - | - | - | 31 33 | - | - | - | 45 |
5 | - | 0 | 45 | 15 17 | - | - | - | - | - |
6 | - | - | - | - | - | 1 47 | 12 | 42 | - |
7 | 0 2 | - | 33 | - | - | 36 | - | - | - |
8 | - | 0 | - | - | - | 6 | - | - | 15 17 |
9 | 0 | - | - | 3 | - | - | - | 31 33 | - |