C4graphConstructions for C4[ 432, 46 ] = CPM(3,2,24,1)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 432, 46 ]. See Glossary for some detail.

CPM( 3, 2, 24, 1) = CPM( 6, 2, 24, 1) = AMC( 48, 3, [ 0. 1: 2. 0])

      = UG(ATD[432, 96]) = UG(ATD[432, 97]) = UG(ATD[432, 98])

      = ATD[ 9, 1]#ATD[ 24, 3] = ATD[ 9, 1]#ATD[ 72, 17] = ATD[ 12, 2]#ATD[ 72, 17]

      = ATD[ 18, 1]#ATD[ 24, 3] = ATD[ 18, 1]#ATD[ 72, 17] = ATD[ 24, 3]#ATD[ 36, 8]

      = ATD[ 24, 3]#ATD[ 72, 17] = ATD[ 36, 8]#ATD[ 72, 17] = ATD[ 72, 17]#DCyc[ 3]

      = ATD[ 72, 17]#DCyc[ 6] = ATD[ 72, 17]#ATD[ 72, 17] = UG(Rmap(864, 81) { 48, 4| 6}_ 48)

      = UG(Rmap(864, 86) { 48, 4| 6}_ 48) = MG(Rmap(432,127) { 6, 48| 6}_ 48) = DG(Rmap(432,127) { 6, 48| 6}_ 48)

      = MG(Rmap(432,129) { 6, 48| 6}_ 48) = DG(Rmap(432,129) { 6, 48| 6}_ 48) = DG(Rmap(432,133) { 48, 6| 6}_ 48)

      = DG(Rmap(432,137) { 48, 6| 6}_ 48) = BGCG(DW( 3, 3), C_ 24, 1) = BGCG(DW( 24, 3), C_ 3, 3)

      = BGCG(CPM( 3, 2, 12, 1); K1;{8, 10}) = AT[432, 6]

Cyclic coverings

mod 48:
123456789
1 - - - 0 - 0 0 - 0
2 - - 0 - 0 - 14 0 -
3 - 0 - 1 45 - - 13 -
4 0 - 47 - 31 29 - - -
5 - 0 3 17 - - 1 - -
6 0 - - 19 - - - 15 3
7 0 34 - - 47 - - - 19
8 - 0 35 - - 33 - - 17
9 0 - - - - 45 29 31 -

mod 48:
123456789
1 - 0 - 0 - - - 0 0
2 0 - 33 - - - 33 - 1
3 - 15 - 19 43 - 1 - -
4 0 - 29 - 25 - - 47 -
5 - - 5 23 - 28 - 19 -
6 - - - - 20 - 22 38 42
7 - 15 47 - - 26 - - 19
8 0 - - 1 29 10 - - -
9 0 47 - - - 6 29 - -

mod 48:
123456789
1 - 0 - 0 - - 0 0 -
2 0 - - 1 33 33 - - -
3 - - 1 47 - - - 20 24 -
4 0 47 - - 29 - - - 35
5 - 15 - 19 1 47 - - - -
6 - 15 - - - - - 19 5 7
7 0 - 28 - - - - 1 39
8 0 - 24 - - 29 47 - -
9 - - - 13 - 41 43 9 - -

mod 48:
123456789
1 - - - 0 - - 0 46 - 0
2 - 1 47 - - 0 - - 0 -
3 - - 1 47 - 3 - 15 - -
4 0 - - - 31 33 - - - 45
5 - 0 45 15 17 - - - - -
6 - - - - - 1 47 12 42 -
7 0 2 - 33 - - 36 - - -
8 - 0 - - - 6 - - 15 17
9 0 - - 3 - - - 31 33 -