[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 432, 65 ]. See Glossary for some
detail.
UG(ATD[432, 29]) = UG(ATD[432, 30]) = MG(Cmap(432, 43) { 6, 36| 6}_ 36)
= MG(Cmap(432, 44) { 6, 36| 6}_ 36) = HC(Cmap(108, 3) { 9, 6| 6}_ 36) =
HC(Cmap(108, 4) { 9, 6| 6}_ 36)
= HT[432, 15]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | 0 | 0 | 0 | - | - | - | - | - | - | - |
| 2 | 0 | - | 1 | - | - | - | 0 | - | 0 | - | - | - |
| 3 | 0 | 35 | - | - | - | 20 | - | 20 | - | - | - | - |
| 4 | 0 | - | - | - | 35 | - | - | - | 4 | - | 0 | - |
| 5 | 0 | - | - | 1 | - | - | - | 12 | - | 16 | - | - |
| 6 | - | - | 16 | - | - | - | 31 | 1 | - | - | - | 4 |
| 7 | - | 0 | - | - | - | 5 | - | - | 35 | - | - | 10 |
| 8 | - | - | 16 | - | 24 | 35 | - | - | - | 5 | - | - |
| 9 | - | 0 | - | 32 | - | - | 1 | - | - | - | 31 | - |
| 10 | - | - | - | - | 20 | - | - | 31 | - | - | 5 | 30 |
| 11 | - | - | - | 0 | - | - | - | - | 5 | 31 | - | 24 |
| 12 | - | - | - | - | - | 32 | 26 | - | - | 6 | 12 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 35 | 0 | - | - | - | - | 0 | - | - | - | - | - |
| 2 | 0 | - | - | 0 | 0 | - | 3 | - | - | - | - | - |
| 3 | - | - | 11 25 | - | - | - | - | 0 | - | - | - | 0 |
| 4 | - | 0 | - | - | 33 | - | - | - | 0 | - | 0 | - |
| 5 | - | 0 | - | 3 | - | 11 | - | - | - | 11 | - | - |
| 6 | - | - | - | - | 25 | 13 23 | - | - | - | 3 | - | - |
| 7 | 0 | 33 | - | - | - | - | - | 24 | 35 | - | - | - |
| 8 | - | - | 0 | - | - | - | 12 | - | 8 | - | - | 3 |
| 9 | - | - | - | 0 | - | - | 1 | 28 | - | - | 3 | - |
| 10 | - | - | - | - | 25 | 33 | - | - | - | - | 2 | 19 |
| 11 | - | - | - | 0 | - | - | - | - | 33 | 34 | - | 14 |
| 12 | - | - | 0 | - | - | - | - | 33 | - | 17 | 22 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | - | 0 | 0 | 0 | - | 0 | - | - | - | - | - | - |
| 2 | 0 | - | - | - | 0 | 3 | - | - | - | - | 0 | - |
| 3 | 0 | - | - | 3 | - | - | 4 | 4 | - | - | - | - |
| 4 | 0 | - | 33 | - | - | - | - | - | 0 | - | 8 | - |
| 5 | - | 0 | - | - | - | - | - | - | - | 0 | 33 | 0 |
| 6 | 0 | 33 | - | - | - | - | - | 24 | - | - | - | 1 |
| 7 | - | - | 32 | - | - | - | - | 33 | 31 | 32 | - | - |
| 8 | - | - | 32 | - | - | 12 | 3 | - | - | - | - | 10 |
| 9 | - | - | - | 0 | - | - | 5 | - | - | 34 | 11 | - |
| 10 | - | - | - | - | 0 | - | 4 | - | 2 | - | - | 3 |
| 11 | - | 0 | - | 28 | 3 | - | - | - | 25 | - | - | - |
| 12 | - | - | - | - | 0 | 35 | - | 26 | - | 33 | - | - |