[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 432, 111 ]. See Glossary for some
detail.
UG(ATD[432, 163]) = UG(ATD[432, 164]) = UG(ATD[432, 165])
= MG(Rmap(432,306) { 12, 36| 12}_ 36) = DG(Rmap(432,306) { 12, 36| 12}_ 36) =
MG(Rmap(432,308) { 12, 36| 4}_ 36)
= DG(Rmap(432,308) { 12, 36| 4}_ 36) = DG(Rmap(432,323) { 36, 12| 12}_ 36) =
DG(Rmap(432,325) { 36, 12| 4}_ 36)
= BGCG(R_ 36( 20, 19), C_ 3, 2) = BGCG(UG(ATD[216,65]); K1;5) = AT[432, 94]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 35 | - | - | - | 0 | - | - | - | 0 | - | - | - |
2 | - | - | - | 0 | - | 0 2 | 0 | - | - | - | - | - |
3 | - | - | - | 28 | - | - | 32 | 0 2 | - | - | - | - |
4 | - | 0 | 8 | - | 27 | - | 1 | - | - | - | - | - |
5 | 0 | - | - | 9 | - | - | - | - | - | - | 0 | 0 |
6 | - | 0 34 | - | - | - | - | - | - | - | 0 | 24 | - |
7 | - | 0 | 4 | 35 | - | - | - | - | 21 | - | - | - |
8 | - | - | 0 34 | - | - | - | - | - | - | 32 | 16 | - |
9 | 0 | - | - | - | - | - | 15 | - | - | 14 | - | 4 |
10 | - | - | - | - | - | 0 | - | 4 | 22 | - | 21 | - |
11 | - | - | - | - | 0 | 12 | - | 20 | - | 15 | - | - |
12 | - | - | - | - | 0 | - | - | - | 32 | - | - | 1 35 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | 0 | - | 0 | - | - | - | - |
2 | 0 | - | 33 | - | - | - | 0 | - | - | - | 0 | - |
3 | 0 | 3 | - | - | 1 | - | - | - | 1 | - | - | - |
4 | - | - | - | - | - | 32 | - | 4 | - | 0 | - | 0 |
5 | - | - | 35 | - | - | - | - | - | 3 25 | 9 | - | - |
6 | 0 | - | - | 4 | - | - | - | 11 33 | - | - | - | - |
7 | - | 0 | - | - | - | - | - | - | - | - | 11 33 | 26 |
8 | 0 | - | - | 32 | - | 3 25 | - | - | - | - | - | - |
9 | - | - | 35 | - | 11 33 | - | - | - | - | 17 | - | - |
10 | - | - | - | 0 | 27 | - | - | - | 19 | - | - | 33 |
11 | - | 0 | - | - | - | - | 3 25 | - | - | - | - | 18 |
12 | - | - | - | 0 | - | - | 10 | - | - | 3 | 18 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 35 | 0 | - | - | - | - | - | - | - | - | 0 | - |
2 | 0 | - | - | - | - | 0 | - | - | - | 0 | 33 | - |
3 | - | - | 1 35 | - | 0 | - | 0 | - | - | - | - | - |
4 | - | - | - | - | 28 | 19 | - | - | 0 | - | - | 0 |
5 | - | - | 0 | 8 | - | - | 3 | - | 5 | - | - | - |
6 | - | 0 | - | 17 | - | - | - | - | - | 33 | - | 14 |
7 | - | - | 0 | - | 33 | - | - | - | - | - | 23 | 3 |
8 | - | - | - | - | - | - | - | 1 35 | 4 | 25 | - | - |
9 | - | - | - | 0 | 31 | - | - | 32 | - | 18 | - | - |
10 | - | 0 | - | - | - | 3 | - | 11 | 18 | - | - | - |
11 | 0 | 3 | - | - | - | - | 13 | - | - | - | - | 19 |
12 | - | - | - | 0 | - | 22 | 33 | - | - | - | 17 | - |