[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 432, 117 ]. See Glossary for some
detail.
UG(ATD[432, 181]) = UG(ATD[432, 182]) = UG(ATD[432, 183])
= MG(Rmap(432,212) { 12, 18| 6}_ 36) = DG(Rmap(432,212) { 12, 18| 6}_ 36) =
DG(Rmap(432,216) { 18, 12| 6}_ 36)
= DG(Rmap(432,304) { 12, 36| 4}_ 18) = BGCG(R_ 12( 8, 7), C_ 9, 4) =
BGCG(Pr_ 36( 1, 25, 29, 17); K2;2)
= AT[432, 35]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | 0 | - | - | - | - | - | 0 | - | 0 |
2 | - | - | 20 | - | 0 | 0 | - | - | - | - | 0 | - |
3 | 0 | 16 | - | 33 | - | - | - | - | - | - | 1 | - |
4 | 0 | - | 3 | - | - | - | - | - | 0 | 35 | - | - |
5 | - | 0 | - | - | - | - | - | - | 14 | - | 17 | 19 |
6 | - | 0 | - | - | - | - | 18 | 18 | - | 1 | - | - |
7 | - | - | - | - | - | 18 | - | 21 | - | 0 | 22 | - |
8 | - | - | - | - | - | 18 | 15 | - | 17 | - | - | 18 |
9 | - | - | - | 0 | 22 | - | - | 19 | - | - | - | 4 |
10 | 0 | - | - | 1 | - | 35 | 0 | - | - | - | - | - |
11 | - | 0 | 35 | - | 19 | - | 14 | - | - | - | - | - |
12 | 0 | - | - | - | 17 | - | - | 18 | 32 | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 35 | 0 | - | 0 | - | - | - | - | - | - | - | - |
2 | 0 | - | - | - | - | - | 17 | 17 | - | 17 | - | - |
3 | - | - | - | 16 | - | - | - | - | - | 18 20 | 0 | - |
4 | 0 | - | 20 | - | - | 0 | - | 21 | - | - | - | - |
5 | - | - | - | - | - | - | - | 1 3 | 0 | - | 1 | - |
6 | - | - | - | 0 | - | 17 19 | - | - | - | - | 16 | - |
7 | - | 19 | - | - | - | - | 17 19 | - | 2 | - | - | - |
8 | - | 19 | - | 15 | 33 35 | - | - | - | - | - | - | - |
9 | - | - | - | - | 0 | - | 34 | - | - | 2 | - | 29 |
10 | - | 19 | 16 18 | - | - | - | - | - | 34 | - | - | - |
11 | - | - | 0 | - | 35 | 20 | - | - | - | - | - | 32 |
12 | - | - | - | - | - | - | - | - | 7 | - | 4 | 1 35 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 1 | - | - | 0 19 | - | - | - | - | - |
2 | - | - | - | 9 | 0 | - | - | 0 | - | - | - | 0 |
3 | - | - | - | 28 | 8 | - | - | 10 | - | - | - | 35 |
4 | 0 35 | 27 | 8 | - | - | - | - | - | - | - | - | - |
5 | - | 0 | 28 | - | - | - | - | - | - | 1 | 1 | - |
6 | - | - | - | - | - | - | - | - | 0 19 | 16 | 23 | - |
7 | 0 17 | - | - | - | - | - | - | - | - | 0 | 27 | - |
8 | - | 0 | 26 | - | - | - | - | - | - | 19 | 17 | - |
9 | - | - | - | - | - | 0 17 | - | - | - | - | - | 4 5 |
10 | - | - | - | - | 35 | 20 | 0 | 17 | - | - | - | - |
11 | - | - | - | - | 35 | 13 | 9 | 19 | - | - | - | - |
12 | - | 0 | 1 | - | - | - | - | - | 31 32 | - | - | - |