[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 432, 140 ]. See Glossary for some
detail.
UG(ATD[432, 277]) = UG(ATD[432, 278]) = UG(ATD[432, 279])
= MG(Rmap(432,330) { 12, 48| 6}_ 48) = DG(Rmap(432,330) { 12, 48| 6}_ 48) =
MG(Rmap(432,333) { 12, 48| 6}_ 48)
= DG(Rmap(432,333) { 12, 48| 6}_ 48) = DG(Rmap(432,338) { 48, 12| 6}_ 48) =
DG(Rmap(432,340) { 48, 12| 6}_ 48)
= BGCG(AMC( 24, 3, [ 0. 1: 2. 2]); K1;1) = AT[432, 79]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 1 47 | - | 0 | - | - | - | 0 | - | - |
2 | - | - | - | 0 | 0 | 0 | 24 | - | - |
3 | 0 | - | - | 1 | - | - | 27 | 25 | - |
4 | - | 0 | 47 | - | - | 21 | - | 21 | - |
5 | - | 0 | - | - | - | - | 27 | 23 | 39 |
6 | - | 0 | - | 27 | - | 1 47 | - | - | - |
7 | 0 | 24 | 21 | - | 21 | - | - | - | - |
8 | - | - | 23 | 27 | 25 | - | - | - | 37 |
9 | - | - | - | - | 9 | - | - | 11 | 1 47 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 | 0 | - | - | 0 40 | - |
2 | - | - | - | - | 24 | 0 | 0 40 | - | - |
3 | - | - | - | 24 | - | 24 | - | - | 0 8 |
4 | 0 | - | 24 | - | - | - | - | 1 | 17 |
5 | 0 | 24 | - | - | - | - | 25 | 33 | - |
6 | - | 0 | 24 | - | - | - | 33 | - | 33 |
7 | - | 0 8 | - | - | 23 | 15 | - | - | - |
8 | 0 8 | - | - | 47 | 15 | - | - | - | - |
9 | - | - | 0 40 | 31 | - | 15 | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | 0 2 | - | - | - |
2 | 0 | - | 1 | - | - | 27 | 1 | - | - |
3 | - | 47 | - | - | - | - | 45 47 | 23 | - |
4 | 0 | - | - | - | 0 | - | 45 | - | 0 |
5 | - | - | - | 0 | 1 47 | - | - | 26 | - |
6 | 0 46 | 21 | - | - | - | - | - | 1 | - |
7 | - | 47 | 1 3 | 3 | - | - | - | - | - |
8 | - | - | 25 | - | 22 | 47 | - | - | 26 |
9 | - | - | - | 0 | - | - | - | 22 | 23 25 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 | - | 0 | 0 | - | 0 |
2 | - | - | - | - | 0 | 24 | - | 0 | 40 |
3 | - | - | - | 24 | 24 | - | 8 | 40 | - |
4 | 0 | - | 24 | - | - | - | - | 1 | 9 |
5 | - | 0 | 24 | - | - | - | 41 | - | 25 |
6 | 0 | 24 | - | - | - | - | 33 | 33 | - |
7 | 0 | - | 40 | - | 7 | 15 | - | - | - |
8 | - | 0 | 8 | 47 | - | 15 | - | - | - |
9 | 0 | 8 | - | 39 | 23 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | 0 26 | - | 0 | - | - | - |
2 | - | - | 24 | - | - | - | - | 0 26 | 0 |
3 | 0 | 24 | - | 3 | - | - | - | 3 | - |
4 | 0 22 | - | 45 | - | - | 1 | - | - | - |
5 | - | - | - | - | - | 3 | 0 26 | - | 1 |
6 | 0 | - | - | 47 | 45 | - | 0 | - | - |
7 | - | - | - | - | 0 22 | 0 | - | - | 2 |
8 | - | 0 22 | 45 | - | - | - | - | - | 25 |
9 | - | 0 | - | - | 47 | - | 46 | 23 | - |