C4graphGraph forms for C4 [ 432, 143 ] = UG(ATD[432,304])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 432, 143 ] = UG(ATD[432,304]).

(I) Following is a form readable by MAGMA:

g:=Graph<432|{ {18, 19}, {414, 415}, {378, 379}, {364, 365}, {362, 363}, {282, 283}, {162, 163}, {150, 151}, {86, 87}, {54, 55}, {180, 181}, {186, 187}, {202, 203}, {57, 59}, {381, 383}, {365, 367}, {1, 2}, {372, 375}, {285, 286}, {117, 118}, {113, 114}, {105, 106}, {1, 5}, {3, 7}, {2, 6}, {139, 142}, {307, 310}, {304, 309}, {386, 388}, {43, 44}, {387, 388}, {369, 374}, {291, 292}, {131, 132}, {83, 84}, {58, 61}, {216, 223}, {387, 395}, {420, 428}, {419, 427}, {3, 10}, {419, 426}, {416, 425}, {385, 392}, {65, 75}, {404, 414}, {181, 190}, {4, 8}, {371, 383}, {84, 89}, {292, 297}, {147, 157}, {420, 426}, {290, 300}, {416, 431}, {12, 28}, {43, 58}, {101, 116}, {202, 219}, {2, 16}, {396, 414}, {200, 218}, {7, 20}, {15, 28}, {11, 24}, {8, 27}, {68, 80}, {4, 17}, {366, 379}, {360, 381}, {290, 311}, {74, 95}, {14, 27}, {12, 25}, {6, 19}, {9, 31}, {289, 311}, {5, 18}, {361, 382}, {289, 310}, {73, 94}, {13, 26}, {134, 158}, {141, 149}, {140, 148}, {385, 408}, {386, 411}, {101, 127}, {367, 373}, {32, 60}, {39, 59}, {8, 21}, {429, 432}, {10, 23}, {37, 59}, {9, 22}, {431, 432}, {303, 304}, {47, 48}, {64, 96}, {332, 364}, {155, 187}, {207, 239}, {76, 109}, {275, 306}, {88, 121}, {260, 293}, {135, 165}, {213, 247}, {22, 53}, {336, 371}, {274, 305}, {209, 242}, {219, 248}, {87, 115}, {399, 427}, {398, 426}, {137, 173}, {200, 236}, {397, 424}, {95, 121}, {399, 425}, {398, 424}, {277, 307}, {258, 292}, {75, 108}, {152, 191}, {19, 59}, {341, 381}, {80, 120}, {23, 63}, {22, 62}, {21, 61}, {20, 60}, {16, 57}, {395, 418}, {392, 417}, {340, 381}, {148, 189}, {144, 185}, {67, 106}, {10, 32}, {397, 423}, {340, 382}, {287, 309}, {11, 33}, {17, 58}, {346, 369}, {287, 308}, {66, 105}, {214, 253}, {88, 116}, {284, 304}, {30, 48}, {151, 185}, {256, 302}, {87, 120}, {283, 308}, {25, 41}, {409, 425}, {401, 417}, {334, 382}, {138, 186}, {325, 372}, {407, 422}, {403, 418}, {6, 52}, {407, 421}, {284, 302}, {7, 53}, {30, 45}, {412, 431}, {83, 96}, {211, 231}, {327, 371}, {282, 302}, {84, 97}, {411, 430}, {409, 428}, {5, 51}, {413, 427}, {410, 428}, {26, 44}, {15, 56}, {410, 429}, {401, 422}, {347, 364}, {85, 98}, {10, 50}, {285, 293}, {93, 101}, {211, 235}, {221, 229}, {14, 55}, {286, 295}, {24, 34}, {413, 423}, {405, 431}, {334, 372}, {192, 250}, {222, 228}, {13, 54}, {412, 423}, {406, 429}, {90, 97}, {77, 118}, {267, 304}, {207, 243}, {21, 40}, {408, 421}, {406, 427}, {403, 430}, {283, 294}, {135, 186}, {210, 239}, {212, 233}, {16, 46}, {337, 367}, {335, 369}, {29, 35}, {31, 32}, {405, 426}, {77, 114}, {223, 224}, {301, 365}, {45, 108}, {311, 374}, {308, 373}, {305, 368}, {302, 367}, {52, 118}, {162, 225}, {315, 376}, {306, 369}, {280, 347}, {180, 240}, {281, 349}, {280, 348}, {269, 329}, {42, 111}, {296, 365}, {162, 231}, {171, 238}, {263, 322}, {51, 117}, {273, 343}, {272, 342}, {176, 246}, {264, 334}, {265, 335}, {151, 208}, {284, 347}, {25, 81}, {299, 355}, {297, 353}, {296, 352}, {256, 328}, {257, 329}, {258, 330}, {259, 331}, {261, 333}, {29, 84}, {299, 354}, {166, 239}, {259, 330}, {261, 332}, {190, 244}, {263, 333}, {57, 114}, {288, 363}, {275, 344}, {277, 345}, {279, 347}, {276, 345}, {49, 127}, {313, 375}, {51, 125}, {264, 327}, {300, 355}, {277, 346}, {270, 321}, {24, 72}, {311, 359}, {310, 358}, {309, 357}, {308, 356}, {271, 351}, {258, 338}, {313, 360}, {161, 243}, {28, 79}, {314, 361}, {298, 377}, {279, 323}, {310, 354}, {27, 78}, {309, 352}, {24, 64}, {141, 213}, {128, 216}, {28, 68}, {27, 67}, {26, 66}, {25, 65}, {163, 251}, {164, 252}, {165, 253}, {166, 254}, {167, 255}, {35, 122}, {282, 323}, {160, 249}, {31, 69}, {273, 331}, {271, 341}, {270, 340}, {266, 336}, {267, 337}, {161, 250}, {164, 255}, {268, 343}, {154, 198}, {282, 326}, {165, 249}, {188, 224}, {257, 349}, {33, 124}, {163, 254}, {267, 342}, {45, 115}, {284, 322}, {269, 339}, {138, 212}, {135, 217}, {266, 340}, {268, 338}, {175, 240}, {188, 227}, {133, 229}, {134, 230}, {22, 119}, {140, 237}, {130, 227}, {48, 81}, {44, 78}, {303, 333}, {146, 240}, {45, 79}, {170, 200}, {18, 113}, {152, 251}, {146, 241}, {145, 242}, {129, 226}, {49, 82}, {31, 123}, {299, 335}, {149, 241}, {256, 357}, {32, 70}, {313, 351}, {158, 248}, {136, 238}, {33, 71}, {188, 218}, {42, 77}, {159, 248}, {131, 228}, {191, 215}, {7, 110}, {295, 334}, {158, 247}, {156, 245}, {132, 237}, {177, 216}, {128, 234}, {156, 246}, {153, 243}, {152, 242}, {129, 235}, {189, 215}, {35, 72}, {301, 326}, {39, 76}, {18, 126}, {128, 236}, {19, 127}, {6, 107}, {38, 75}, {36, 73}, {16, 125}, {187, 214}, {56, 86}, {315, 341}, {294, 328}, {155, 245}, {154, 244}, {130, 236}, {164, 202}, {37, 74}, {132, 235}, {168, 199}, {182, 198}, {188, 205}, {301, 348}, {180, 198}, {276, 359}, {307, 320}, {303, 348}, {287, 364}, {184, 204}, {300, 344}, {272, 356}, {185, 205}, {39, 82}, {275, 358}, {38, 80}, {296, 350}, {174, 216}, {33, 89}, {313, 321}, {295, 351}, {294, 350}, {281, 353}, {150, 238}, {62, 70}, {37, 93}, {36, 92}, {35, 91}, {34, 90}, {173, 212}, {297, 339}, {17, 106}, {314, 321}, {150, 234}, {172, 208}, {181, 201}, {182, 202}, {183, 203}, {185, 196}, {314, 327}, {41, 87}, {315, 325}, {145, 239}, {183, 201}, {47, 80}, {191, 192}, {95, 221}, {95, 220}, {11, 143}, {109, 233}, {100, 236}, {29, 148}, {104, 227}, {91, 215}, {102, 234}, {101, 233}, {106, 228}, {312, 424}, {124, 237}, {312, 425}, {29, 143}, {118, 229}, {20, 128}, {21, 129}, {23, 130}, {125, 232}, {126, 232}, {126, 233}, {122, 226}, {92, 197}, {122, 231}, {120, 230}, {71, 231}, {121, 217}, {64, 225}, {305, 400}, {125, 220}, {99, 194}, {97, 192}, {67, 226}, {85, 247}, {124, 222}, {116, 214}, {102, 196}, {98, 193}, {55, 147}, {122, 222}, {85, 241}, {70, 227}, {288, 389}, {23, 177}, {115, 213}, {114, 212}, {94, 248}, {100, 195}, {44, 132}, {40, 131}, {124, 215}, {46, 133}, {60, 144}, {288, 396}, {94, 240}, {37, 138}, {63, 144}, {88, 232}, {109, 221}, {60, 142}, {61, 143}, {96, 211}, {54, 131}, {56, 141}, {48, 134}, {305, 391}, {62, 136}, {58, 140}, {49, 135}, {53, 130}, {98, 219}, {50, 136}, {51, 137}, {55, 140}, {52, 138}, {83, 237}, {56, 134}, {53, 139}, {20, 171}, {34, 157}, {34, 226}, {345, 409}, {330, 394}, {329, 393}, {328, 392}, {110, 174}, {78, 143}, {104, 169}, {93, 156}, {111, 173}, {337, 403}, {336, 402}, {66, 129}, {104, 172}, {116, 176}, {98, 167}, {75, 141}, {338, 404}, {119, 177}, {107, 173}, {97, 166}, {343, 400}, {89, 145}, {120, 178}, {121, 179}, {99, 168}, {102, 170}, {331, 391}, {330, 390}, {329, 389}, {328, 388}, {103, 171}, {100, 169}, {351, 402}, {349, 400}, {69, 139}, {342, 408}, {331, 389}, {83, 157}, {81, 159}, {39, 232}, {350, 401}, {346, 405}, {76, 156}, {380, 428}, {123, 171}, {63, 238}, {79, 158}, {74, 155}, {72, 153}, {70, 151}, {68, 149}, {66, 147}, {64, 145}, {65, 146}, {78, 157}, {73, 154}, {69, 150}, {36, 241}, {350, 395}, {346, 399}, {344, 397}, {103, 177}, {109, 187}, {67, 148}, {345, 398}, {344, 399}, {337, 392}, {339, 394}, {370, 424}, {68, 159}, {380, 423}, {349, 390}, {343, 396}, {338, 393}, {115, 175}, {79, 146}, {342, 395}, {71, 153}, {112, 174}, {63, 224}, {370, 429}, {339, 396}, {96, 191}, {71, 152}, {11, 235}, {374, 406}, {362, 394}, {356, 388}, {85, 181}, {62, 223}, {82, 176}, {92, 190}, {61, 222}, {57, 221}, {373, 401}, {104, 142}, {377, 415}, {353, 391}, {90, 189}, {52, 220}, {366, 390}, {102, 142}, {94, 183}, {74, 160}, {378, 400}, {376, 402}, {374, 412}, {359, 397}, {111, 133}, {69, 174}, {49, 220}, {362, 391}, {355, 398}, {72, 166}, {373, 411}, {368, 414}, {73, 167}, {377, 393}, {82, 160}, {65, 178}, {378, 393}, {377, 394}, {371, 384}, {356, 407}, {352, 403}, {100, 144}, {372, 384}, {353, 404}, {355, 406}, {127, 137}, {352, 407}, {354, 405}, {89, 161}, {354, 410}, {112, 136}, {93, 165}, {92, 164}, {91, 163}, {90, 162}, {91, 161}, {366, 404}, {358, 412}, {126, 133}, {357, 408}, {359, 410}, {81, 175}, {357, 411}, {76, 179}, {358, 409}, {43, 298}, {40, 298}, {113, 375}, {26, 274}, {117, 383}, {117, 376}, {105, 379}, {107, 376}, {113, 361}, {105, 368}, {8, 274}, {107, 375}, {38, 312}, {108, 370}, {99, 322}, {36, 262}, {4, 288}, {77, 360}, {99, 324}, {12, 312}, {1, 315}, {1, 314}, {43, 363}, {46, 361}, {206, 390}, {206, 389}, {46, 383}, {40, 379}, {42, 382}, {30, 380}, {13, 366}, {88, 316}, {14, 363}, {13, 362}, {2, 360}, {12, 380}, {15, 370}, {4, 378}, {14, 368}, {3, 387}, {3, 385}, {155, 280}, {189, 318}, {199, 323}, {5, 384}, {38, 419}, {186, 316}, {41, 416}, {9, 387}, {199, 333}, {47, 420}, {17, 415}, {47, 416}, {50, 418}, {209, 320}, {183, 293}, {50, 417}, {154, 271}, {159, 262}, {225, 320}, {180, 278}, {184, 283}, {178, 278}, {179, 279}, {249, 348}, {160, 263}, {168, 256}, {169, 257}, {170, 258}, {54, 415}, {167, 270}, {149, 319}, {255, 341}, {15, 420}, {170, 257}, {175, 260}, {252, 336}, {147, 318}, {30, 432}, {9, 422}, {172, 259}, {182, 262}, {244, 325}, {253, 332}, {182, 260}, {246, 324}, {245, 326}, {41, 413}, {178, 262}, {179, 263}, {251, 335}, {137, 316}, {172, 281}, {176, 261}, {244, 321}, {246, 323}, {139, 317}, {190, 264}, {245, 322}, {42, 402}, {168, 272}, {169, 273}, {255, 327}, {252, 325}, {253, 326}, {249, 324}, {203, 266}, {214, 279}, {217, 280}, {213, 278}, {218, 281}, {224, 291}, {203, 271}, {209, 276}, {196, 259}, {201, 270}, {210, 277}, {250, 306}, {103, 430}, {192, 265}, {193, 264}, {194, 267}, {196, 269}, {234, 291}, {110, 421}, {193, 266}, {254, 306}, {254, 307}, {195, 269}, {195, 268}, {242, 290}, {119, 421}, {243, 289}, {247, 293}, {197, 278}, {119, 418}, {112, 422}, {218, 268}, {197, 285}, {198, 286}, {199, 287}, {250, 290}, {153, 320}, {229, 316}, {230, 319}, {123, 417}, {228, 318}, {251, 289}, {207, 276}, {210, 265}, {193, 285}, {204, 272}, {205, 273}, {206, 274}, {207, 275}, {217, 261}, {112, 430}, {195, 291}, {223, 317}, {230, 260}, {252, 286}, {204, 303}, {194, 294}, {204, 296}, {205, 297}, {206, 298}, {219, 319}, {86, 432}, {103, 385}, {225, 265}, {110, 386}, {208, 317}, {211, 318}, {201, 295}, {111, 384}, {194, 301}, {108, 413}, {184, 332}, {208, 292}, {86, 419}, {200, 317}, {123, 386}, {197, 319}, {209, 299}, {184, 324}, {210, 300} }>;

(II) A more general form is to represent the graph as the orbit of {18, 19} under the group generated by the following permutations:

a: (2, 314)(3, 276)(4, 298)(5, 315)(6, 327)(7, 207)(8, 206)(9, 277)(10, 209)(11, 169)(12, 168)(13, 368)(14, 366)(15, 194)(16, 321)(17, 377)(18, 341)(19, 255)(20, 243)(21, 389)(22, 210)(23, 242)(24, 104)(25, 199)(26, 305)(27, 390)(28, 99)(29, 170)(30, 302)(31, 307)(32, 320)(33, 100)(34, 172)(35, 102)(36, 82)(37, 98)(38, 204)(39, 73)(40, 288)(41, 287)(43, 378)(44, 400)(45, 284)(46, 313)(47, 283)(48, 282)(49, 92)(50, 299)(51, 325)(52, 264)(53, 239)(54, 414)(55, 404)(56, 301)(57, 270)(58, 393)(59, 167)(60, 153)(61, 329)(62, 265)(63, 152)(64, 227)(65, 333)(66, 391)(67, 330)(68, 324)(69, 254)(70, 225)(71, 144)(72, 142)(74, 85)(75, 303)(76, 94)(77, 382)(78, 349)(79, 322)(80, 184)(81, 323)(83, 218)(84, 200)(86, 365)(87, 364)(88, 198)(89, 236)(90, 208)(91, 234)(93, 219)(95, 181)(96, 188)(97, 317)(101, 202)(103, 311)(105, 362)(106, 394)(107, 371)(108, 304)(109, 183)(110, 275)(111, 402)(112, 369)(113, 381)(114, 340)(115, 347)(116, 182)(117, 372)(118, 334)(119, 300)(120, 332)(121, 180)(122, 196)(123, 310)(124, 195)(125, 244)(126, 271)(127, 164)(128, 161)(129, 331)(130, 145)(131, 396)(132, 343)(133, 351)(134, 326)(135, 197)(136, 335)(137, 252)(138, 193)(139, 166)(140, 338)(141, 348)(143, 257)(146, 263)(147, 353)(148, 258)(149, 249)(150, 163)(151, 162)(154, 232)(155, 247)(156, 248)(157, 281)(158, 245)(159, 246)(160, 241)(165, 319)(171, 289)(173, 336)(174, 306)(175, 279)(176, 262)(177, 290)(178, 261)(179, 240)(185, 231)(186, 285)(187, 293)(189, 292)(190, 220)(191, 224)(192, 223)(201, 221)(203, 233)(205, 211)(212, 266)(213, 280)(214, 260)(215, 291)(216, 250)(217, 278)(222, 269)(226, 259)(228, 339)(229, 295)(230, 253)(235, 273)(237, 268)(238, 251)(256, 380)(267, 370)(272, 312)(286, 316)(294, 420)(296, 419)(297, 318)(308, 416)(309, 413)(328, 428)(337, 429)(342, 424)(344, 421)(345, 387)(346, 422)(350, 426)(352, 427)(354, 417)(355, 418)(356, 425)(357, 423)(358, 386)(359, 385)(360, 361)(363, 379)(367, 432)(373, 431)(374, 430)(375, 383)(376, 384)(388, 409)(392, 410)(395, 398)(397, 408)(399, 407)(401, 405)(403, 406)(411, 412)
b: (1, 2, 6, 19, 59, 37, 93, 156, 245, 326, 282, 302, 367, 373, 411, 430, 112, 174, 216, 223, 317, 200, 218, 281, 349, 400, 305, 274, 8, 27, 78, 143, 29, 84, 89, 161, 250, 290, 311, 374, 406, 429, 432, 86, 56, 134, 230, 319, 219, 202, 164, 255, 341, 315)(3, 10, 32, 60, 144, 185, 196, 269, 339, 394, 377, 415, 54, 131, 228, 318, 211, 231, 162, 225, 320, 307, 277, 345, 409, 425, 312, 12, 25, 65, 146, 240, 180, 181, 201, 295, 334, 382, 42, 111, 133, 229, 316, 88, 121, 217, 261, 333, 303, 204, 272, 342, 395, 387)(4, 14, 44, 61, 148, 83, 33, 91, 192, 242, 289, 369, 355, 410, 431, 419, 15, 48, 120, 149, 248, 182, 92, 167, 271, 325, 314, 360, 107, 18, 57, 138, 101, 76, 155, 253, 323, 284, 365, 308, 357, 403, 422, 110, 177, 62, 139, 236, 188, 172, 257, 343, 391, 206)(5, 16, 52, 127, 39, 74, 165, 246, 322, 301, 283, 256, 337, 401, 386, 103, 136, 69, 128, 224, 208, 170, 268, 353, 390, 378, 368, 26, 21, 67, 157, 11, 35, 97, 145, 243, 306, 300, 359, 412, 427, 370, 30, 87, 141, 158, 260, 197, 98, 203, 252, 327, 381, 376)(7, 23, 70, 142, 100, 205, 259, 329, 396, 362, 298, 17, 55, 132, 222, 189, 96, 71, 163, 265, 209, 310, 346, 398, 428, 416, 38, 28, 81, 178, 241, 94, 198, 190, 270, 351, 372, 361, 77, 173, 126, 221, 186, 116, 179, 280, 332, 199, 304, 296, 356, 408, 418, 9)(13, 40, 106, 147, 235, 122, 90, 64, 153, 254, 210, 276, 358, 399, 424, 380, 41, 75, 79, 175, 278, 85, 183, 286, 264, 340, 402, 384, 46, 118, 137, 232, 95, 135, 176, 263, 348, 184, 168, 267, 350, 388, 385, 50, 31, 20, 63, 151, 102, 195, 297, 330, 393, 414)(22, 53, 130, 227, 104, 169, 273, 331, 389, 288, 363, 43, 58, 140, 237, 124, 215, 191, 152, 251, 335, 299, 354, 405, 426, 420, 47, 80, 68, 159, 262, 36, 73, 154, 244, 321, 313, 375, 113, 114, 212, 233, 109, 187, 214, 279, 347, 364, 287, 309, 352, 407, 421, 119)(24, 72, 166, 239, 207, 275, 344, 397, 423, 413, 108, 45, 115, 213, 247, 293, 285, 193, 266, 336, 371, 383, 117, 51, 125, 220, 49, 82, 160, 249, 324, 99, 194, 294, 328, 392, 417, 123, 171, 238, 150, 234, 291, 292, 258, 338, 404, 366, 379, 105, 66, 129, 226, 34)
c: (2, 5)(3, 9)(4, 13)(6, 18)(7, 22)(8, 26)(10, 31)(11, 34)(12, 38)(14, 43)(15, 47)(16, 51)(17, 54)(20, 62)(21, 66)(23, 69)(25, 75)(27, 44)(28, 80)(29, 83)(30, 86)(33, 90)(35, 96)(37, 101)(39, 49)(40, 105)(41, 108)(45, 87)(46, 117)(48, 56)(50, 123)(52, 126)(55, 58)(57, 137)(59, 127)(60, 70)(61, 147)(63, 150)(64, 72)(67, 132)(71, 162)(73, 92)(74, 116)(76, 135)(77, 111)(79, 120)(81, 141)(85, 182)(88, 95)(89, 97)(91, 191)(94, 197)(98, 202)(99, 184)(100, 208)(102, 188)(103, 112)(106, 131)(107, 113)(109, 186)(110, 119)(114, 173)(118, 133)(122, 211)(124, 189)(128, 223)(130, 139)(136, 171)(138, 233)(142, 227)(143, 157)(144, 151)(145, 166)(146, 178)(148, 237)(149, 159)(152, 163)(153, 225)(154, 190)(155, 214)(156, 165)(158, 230)(160, 176)(161, 192)(164, 167)(168, 204)(169, 172)(170, 218)(174, 177)(175, 213)(179, 217)(181, 198)(183, 285)(193, 203)(194, 283)(195, 292)(196, 205)(199, 303)(201, 286)(206, 305)(207, 210)(209, 307)(220, 232)(221, 316)(222, 318)(224, 234)(226, 235)(236, 317)(240, 278)(241, 262)(242, 254)(243, 265)(245, 253)(246, 249)(247, 260)(248, 319)(252, 270)(256, 296)(257, 281)(258, 268)(259, 273)(261, 263)(264, 271)(267, 308)(269, 297)(275, 300)(276, 277)(279, 280)(282, 301)(284, 364)(287, 304)(288, 362)(289, 335)(290, 306)(298, 368)(299, 310)(302, 365)(311, 369)(313, 372)(314, 315)(321, 325)(322, 332)(323, 348)(327, 341)(328, 350)(329, 353)(330, 343)(334, 351)(336, 340)(337, 373)(342, 356)(346, 359)(352, 357)(355, 358)(360, 384)(361, 376)(366, 378)(370, 416)(371, 381)(377, 414)(380, 419)(382, 402)(385, 422)(386, 418)(388, 395)(389, 391)(390, 400)(392, 401)(393, 404)(394, 396)(397, 399)(398, 409)(403, 411)(405, 410)(406, 412)(407, 408)(423, 427)(424, 425)(426, 428)(429, 431)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 432, 143 ]
432
-1 2 5 314 315
-2 1 16 6 360
-3 385 387 7 10
-4 288 378 17 8
-5 1 18 51 384
-6 2 19 52 107
-7 110 3 20 53
-8 4 27 21 274
-9 22 387 422 31
-10 23 3 50 32
-11 33 143 24 235
-12 25 312 28 380
-13 366 26 54 362
-14 55 363 27 368
-15 56 420 28 370
-16 2 46 57 125
-17 58 4 106 415
-18 113 5 126 19
-19 59 6 127 18
-20 60 171 7 128
-21 61 40 8 129
-22 62 9 53 119
-23 177 63 130 10
-24 11 34 72 64
-25 12 81 41 65
-26 44 66 13 274
-27 67 78 14 8
-28 12 68 79 15
-29 143 35 148 84
-30 45 432 48 380
-31 123 69 9 32
-32 70 60 31 10
-33 11 89 124 71
-34 24 90 157 226
-35 122 91 72 29
-36 92 73 262 241
-37 59 93 138 74
-38 419 80 312 75
-39 232 59 82 76
-40 298 379 21 131
-41 25 413 416 87
-42 77 111 402 382
-43 44 363 298 58
-44 132 78 26 43
-45 79 115 30 108
-46 133 16 361 383
-47 420 80 48 416
-48 134 47 81 30
-49 220 135 82 127
-50 418 136 10 417
-51 125 5 137 117
-52 220 6 138 118
-53 22 7 139 130
-54 55 13 415 131
-55 14 147 140 54
-56 134 15 86 141
-57 221 59 114 16
-58 17 61 140 43
-59 57 37 39 19
-60 144 20 32 142
-61 143 222 58 21
-62 22 223 70 136
-63 23 144 224 238
-64 24 145 225 96
-65 178 25 146 75
-66 26 147 105 129
-67 27 148 226 106
-68 80 159 28 149
-69 139 150 31 174
-70 62 227 151 32
-71 33 231 152 153
-72 166 24 35 153
-73 154 167 36 94
-74 155 37 160 95
-75 38 108 141 65
-76 156 179 39 109
-77 114 118 360 42
-78 44 143 157 27
-79 45 146 158 28
-80 68 47 38 120
-81 25 48 159 175
-82 176 49 39 160
-83 157 237 84 96
-84 89 83 29 97
-85 181 247 98 241
-86 56 419 432 87
-87 115 41 86 120
-88 121 232 116 316
-89 33 145 84 161
-90 34 189 162 97
-91 35 215 161 163
-92 36 190 164 197
-93 165 101 156 37
-94 248 73 183 240
-95 121 220 221 74
-96 211 191 83 64
-97 166 90 192 84
-98 167 193 85 219
-99 168 322 324 194
-100 144 169 236 195
-101 233 93 116 127
-102 234 170 196 142
-103 385 177 430 171
-104 169 172 227 142
-105 66 368 379 106
-106 67 17 105 228
-107 375 376 6 173
-108 45 413 370 75
-109 187 221 233 76
-110 386 421 7 174
-111 133 173 42 384
-112 430 136 422 174
-113 375 114 18 361
-114 77 57 113 212
-115 45 213 87 175
-116 88 176 101 214
-117 376 51 118 383
-118 77 117 52 229
-119 22 418 177 421
-120 178 80 87 230
-121 88 179 95 217
-122 231 35 222 226
-123 386 171 31 417
-124 33 222 215 237
-125 220 232 16 51
-126 133 232 233 18
-127 101 49 137 19
-128 234 236 216 20
-129 66 235 226 21
-130 23 236 227 53
-131 132 40 228 54
-132 44 235 237 131
-133 111 46 126 229
-134 56 48 158 230
-135 165 49 217 186
-136 112 50 62 238
-137 127 51 173 316
-138 212 37 52 186
-139 69 53 317 142
-140 55 58 148 237
-141 56 213 149 75
-142 102 60 104 139
-143 11 78 61 29
-144 100 60 63 185
-145 242 89 239 64
-146 79 240 65 241
-147 55 66 157 318
-148 67 189 29 140
-149 319 68 141 241
-150 69 234 238 151
-151 70 150 185 208
-152 242 191 71 251
-153 243 320 71 72
-154 198 244 73 271
-155 187 245 280 74
-156 245 246 93 76
-157 34 78 147 83
-158 79 134 247 248
-159 68 81 248 262
-160 82 249 74 263
-161 89 243 91 250
-162 231 90 225 163
-163 254 91 162 251
-164 255 92 202 252
-165 253 135 93 249
-166 254 72 239 97
-167 255 270 73 98
-168 99 199 256 272
-169 100 257 104 273
-170 200 102 257 258
-171 123 103 238 20
-172 104 259 281 208
-173 111 212 137 107
-174 110 112 69 216
-175 81 115 260 240
-176 246 82 116 261
-177 23 103 216 119
-178 278 262 65 120
-179 121 279 76 263
-180 198 278 181 240
-181 190 201 180 85
-182 198 202 260 262
-183 201 203 94 293
-184 332 324 204 283
-185 144 205 151 196
-186 187 135 138 316
-187 155 214 109 186
-188 224 205 227 218
-189 90 148 215 318
-190 264 244 92 181
-191 192 215 96 152
-192 265 191 250 97
-193 264 266 98 285
-194 99 267 301 294
-195 100 268 269 291
-196 102 269 259 185
-197 319 278 92 285
-198 154 286 180 182
-199 287 168 333 323
-200 170 236 218 317
-201 181 270 183 295
-202 203 182 164 219
-203 266 202 183 271
-204 303 184 272 296
-205 297 188 185 273
-206 298 389 390 274
-207 275 243 276 239
-208 292 172 151 317
-209 242 276 320 299
-210 265 277 300 239
-211 231 235 96 318
-212 233 114 138 173
-213 278 115 247 141
-214 187 253 279 116
-215 189 91 124 191
-216 177 223 128 174
-217 121 135 280 261
-218 188 200 268 281
-219 319 202 248 98
-220 125 49 95 52
-221 57 95 229 109
-222 122 124 61 228
-223 224 62 216 317
-224 188 223 291 63
-225 265 320 162 64
-226 34 67 122 129
-227 188 70 104 130
-228 222 106 131 318
-229 133 221 118 316
-230 319 134 260 120
-231 122 211 71 162
-232 88 125 126 39
-233 101 212 126 109
-234 102 291 128 150
-235 11 132 211 129
-236 100 200 128 130
-237 132 124 83 140
-238 136 171 150 63
-239 166 210 145 207
-240 146 180 94 175
-241 36 146 149 85
-242 209 145 290 152
-243 289 161 207 153
-244 154 321 190 325
-245 155 156 322 326
-246 176 156 323 324
-247 158 213 293 85
-248 158 159 94 219
-249 165 324 160 348
-250 290 192 161 306
-251 289 335 152 163
-252 286 325 336 164
-253 165 332 214 326
-254 166 163 306 307
-255 341 167 327 164
-256 168 302 357 328
-257 169 170 349 329
-258 330 170 292 338
-259 330 331 172 196
-260 182 293 175 230
-261 176 332 333 217
-262 178 36 159 182
-263 179 322 333 160
-264 190 334 193 327
-265 210 192 225 335
-266 203 193 336 340
-267 342 194 304 337
-268 343 195 338 218
-269 195 196 339 329
-270 167 321 201 340
-271 154 341 203 351
-272 342 168 356 204
-273 331 343 169 205
-274 26 8 206 305
-275 344 358 207 306
-276 209 345 359 207
-277 210 345 346 307
-278 178 180 213 197
-279 179 323 214 347
-280 155 347 348 217
-281 353 172 349 218
-282 323 302 326 283
-283 308 282 184 294
-284 322 302 347 304
-285 286 193 293 197
-286 198 295 252 285
-287 308 199 309 364
-288 363 396 4 389
-289 243 310 311 251
-290 242 300 311 250
-291 234 224 292 195
-292 297 258 291 208
-293 247 183 260 285
-294 194 283 328 350
-295 286 201 334 351
-296 352 365 204 350
-297 353 292 205 339
-298 377 40 206 43
-299 209 354 355 335
-300 210 344 355 290
-301 365 194 326 348
-302 256 367 282 284
-303 333 204 304 348
-304 309 267 303 284
-305 400 368 391 274
-306 275 254 369 250
-307 254 320 277 310
-308 287 356 283 373
-309 352 287 357 304
-310 354 289 358 307
-311 374 289 290 359
-312 12 38 424 425
-313 375 321 360 351
-314 1 321 327 361
-315 341 1 376 325
-316 88 137 229 186
-317 200 223 139 208
-318 189 211 147 228
-319 149 197 219 230
-320 209 225 153 307
-321 244 313 270 314
-322 99 245 284 263
-323 199 246 279 282
-324 99 246 249 184
-325 244 315 372 252
-326 253 245 301 282
-327 264 255 314 371
-328 256 388 392 294
-329 257 389 269 393
-330 258 390 259 394
-331 389 259 391 273
-332 253 364 184 261
-333 199 303 261 263
-334 264 382 295 372
-335 265 299 369 251
-336 266 402 371 252
-337 267 367 392 403
-338 268 258 393 404
-339 297 396 269 394
-340 266 270 381 382
-341 255 271 315 381
-342 408 267 272 395
-343 396 268 400 273
-344 275 397 300 399
-345 276 277 398 409
-346 277 399 369 405
-347 364 279 280 284
-348 301 280 303 249
-349 257 400 390 281
-350 401 294 296 395
-351 313 402 271 295
-352 407 309 403 296
-353 297 281 391 404
-354 299 310 410 405
-355 299 398 300 406
-356 308 407 388 272
-357 309 408 256 411
-358 275 310 409 412
-359 276 397 311 410
-360 77 2 313 381
-361 46 113 314 382
-362 363 13 391 394
-363 288 14 43 362
-364 287 332 365 347
-365 364 301 367 296
-366 13 379 390 404
-367 365 302 337 373
-368 14 105 414 305
-369 374 335 346 306
-370 429 15 424 108
-371 336 327 383 384
-372 375 334 325 384
-373 308 367 411 401
-374 311 412 369 406
-375 113 313 107 372
-376 402 117 315 107
-377 298 393 415 394
-378 4 400 379 393
-379 366 378 105 40
-380 12 423 30 428
-381 341 360 383 340
-382 334 42 361 340
-383 46 117 381 371
-384 111 5 371 372
-385 408 3 103 392
-386 110 123 388 411
-387 3 388 9 395
-388 386 387 356 328
-389 331 288 206 329
-390 330 366 206 349
-391 331 353 305 362
-392 385 337 328 417
-393 377 378 338 329
-394 330 377 339 362
-395 418 342 387 350
-396 288 343 414 339
-397 344 423 424 359
-398 355 345 424 426
-399 344 346 425 427
-400 343 378 305 349
-401 422 350 373 417
-402 376 336 42 351
-403 352 418 430 337
-404 353 366 414 338
-405 354 431 346 426
-406 374 429 355 427
-407 352 421 356 422
-408 385 342 421 357
-409 345 358 425 428
-410 429 354 359 428
-411 386 430 357 373
-412 374 431 423 358
-413 423 41 108 427
-414 396 368 404 415
-415 377 17 414 54
-416 431 47 425 41
-417 123 401 50 392
-418 50 403 119 395
-419 38 426 86 427
-420 47 15 426 428
-421 110 407 408 119
-422 407 112 401 9
-423 397 412 380 413
-424 397 398 312 370
-425 409 399 312 416
-426 419 398 420 405
-427 419 399 413 406
-428 409 420 410 380
-429 410 432 370 406
-430 112 103 411 403
-431 432 412 405 416
-432 429 431 30 86
0

**************