C4graphGraph forms for C4 [ 432, 170 ] = PL(ATD[36,2]#DCyc[3])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 432, 170 ] = PL(ATD[36,2]#DCyc[3]).

(I) Following is a form readable by MAGMA:

g:=Graph<432|{ {213, 222}, {207, 239}, {192, 225}, {193, 230}, {205, 234}, {194, 229}, {192, 232}, {192, 233}, {206, 228}, {215, 253}, {197, 232}, {207, 225}, {211, 253}, {210, 252}, {199, 246}, {193, 242}, {204, 250}, {211, 233}, {194, 249}, {211, 232}, {201, 245}, {214, 234}, {203, 244}, {208, 239}, {157, 220}, {184, 249}, {181, 246}, {191, 252}, {159, 219}, {170, 238}, {163, 231}, {179, 245}, {172, 224}, {146, 220}, {186, 244}, {146, 221}, {183, 231}, {141, 223}, {190, 237}, {163, 247}, {139, 222}, {173, 248}, {166, 243}, {169, 255}, {133, 221}, {174, 247}, {174, 245}, {191, 228}, {171, 247}, {185, 230}, {147, 242}, {190, 223}, {144, 242}, {154, 248}, {140, 239}, {130, 231}, {144, 254}, {180, 218}, {129, 240}, {168, 217}, {139, 250}, {145, 224}, {175, 221}, {158, 237}, {172, 223}, {130, 247}, {142, 248}, {136, 255}, {162, 218}, {167, 222}, {153, 227}, {154, 224}, {150, 235}, {133, 251}, {112, 242}, {111, 236}, {119, 243}, {90, 223}, {115, 244}, {124, 251}, {98, 234}, {101, 239}, {125, 240}, {87, 217}, {73, 217}, {114, 225}, {106, 254}, {101, 240}, {108, 249}, {124, 228}, {64, 218}, {127, 227}, {66, 226}, {121, 217}, {88, 251}, {91, 248}, {85, 243}, {89, 255}, {77, 228}, {64, 234}, {68, 238}, {65, 235}, {112, 219}, {65, 236}, {78, 225}, {108, 220}, {109, 221}, {82, 227}, {75, 249}, {71, 243}, {73, 241}, {98, 218}, {70, 255}, {100, 222}, {102, 220}, {83, 238}, {49, 241}, {46, 236}, {38, 229}, {53, 240}, {58, 252}, {43, 236}, {49, 246}, {19, 219}, {54, 254}, {51, 251}, {35, 235}, {52, 253}, {37, 233}, {44, 226}, {11, 219}, {57, 232}, {63, 238}, {59, 233}, {49, 226}, {36, 252}, {62, 230}, {41, 241}, {60, 229}, {32, 250}, {61, 224}, {11, 235}, {2, 227}, {30, 253}, {18, 246}, {27, 254}, {1, 231}, {4, 237}, {27, 241}, {6, 237}, {8, 229}, {10, 250}, {18, 226}, {6, 244}, {7, 245}, {21, 230}, {84, 340}, {155, 411}, {100, 356}, {47, 302}, {17, 275}, {90, 344}, {44, 302}, {130, 384}, {104, 363}, {110, 365}, {128, 387}, {1, 261}, {156, 408}, {23, 275}, {44, 297}, {83, 342}, {122, 383}, {40, 302}, {171, 429}, {2, 261}, {164, 419}, {51, 308}, {31, 280}, {4, 259}, {104, 367}, {128, 391}, {142, 393}, {56, 304}, {9, 256}, {34, 299}, {115, 378}, {73, 323}, {158, 404}, {157, 407}, {155, 401}, {74, 320}, {100, 366}, {102, 364}, {2, 265}, {53, 318}, {30, 274}, {158, 402}, {52, 313}, {170, 423}, {35, 301}, {165, 427}, {160, 430}, {129, 399}, {132, 394}, {12, 259}, {20, 283}, {115, 380}, {127, 368}, {47, 319}, {92, 332}, {72, 344}, {105, 377}, {147, 386}, {14, 284}, {37, 311}, {115, 353}, {134, 404}, {43, 312}, {154, 393}, {54, 290}, {80, 324}, {57, 301}, {26, 268}, {181, 419}, {157, 395}, {51, 293}, {42, 316}, {109, 379}, {144, 390}, {40, 319}, {138, 413}, {146, 389}, {88, 320}, {97, 377}, {44, 309}, {150, 399}, {71, 350}, {103, 382}, {113, 360}, {117, 367}, {152, 386}, {26, 257}, {94, 325}, {122, 353}, {123, 352}, {146, 393}, {25, 261}, {72, 340}, {67, 351}, {132, 408}, {137, 405}, {116, 361}, {47, 305}, {45, 306}, {89, 326}, {80, 335}, {118, 361}, {114, 338}, {117, 341}, {5, 292}, {96, 321}, {82, 371}, {9, 296}, {143, 430}, {48, 275}, {191, 412}, {168, 395}, {86, 373}, {110, 333}, {124, 351}, {22, 306}, {89, 381}, {119, 339}, {127, 346}, {12, 298}, {3, 292}, {62, 281}, {42, 269}, {30, 313}, {15, 296}, {25, 305}, {62, 278}, {143, 423}, {29, 308}, {180, 413}, {68, 365}, {47, 261}, {67, 361}, {136, 418}, {126, 341}, {13, 289}, {190, 402}, {91, 375}, {76, 352}, {52, 281}, {53, 280}, {137, 420}, {4, 298}, {42, 260}, {36, 266}, {7, 296}, {30, 305}, {131, 428}, {137, 422}, {141, 418}, {111, 351}, {186, 394}, {161, 401}, {151, 423}, {40, 281}, {71, 374}, {126, 335}, {151, 421}, {22, 293}, {87, 356}, {2, 310}, {174, 410}, {24, 300}, {21, 289}, {104, 348}, {121, 333}, {76, 377}, {107, 350}, {33, 279}, {173, 411}, {85, 355}, {1, 310}, {147, 420}, {29, 293}, {191, 391}, {187, 387}, {80, 360}, {74, 370}, {27, 290}, {185, 384}, {96, 345}, {38, 284}, {173, 407}, {167, 413}, {126, 324}, {169, 402}, {6, 314}, {152, 420}, {48, 268}, {14, 306}, {15, 306}, {171, 406}, {40, 278}, {45, 275}, {117, 331}, {34, 285}, {179, 396}, {42, 277}, {112, 335}, {26, 346}, {93, 285}, {81, 272}, {103, 294}, {209, 403}, {9, 330}, {63, 380}, {106, 297}, {125, 318}, {3, 327}, {86, 274}, {83, 279}, {66, 262}, {64, 260}, {10, 332}, {94, 280}, {77, 267}, {59, 381}, {100, 290}, {125, 315}, {5, 322}, {209, 406}, {74, 269}, {69, 258}, {23, 336}, {58, 370}, {50, 379}, {206, 391}, {70, 271}, {3, 329}, {213, 415}, {209, 411}, {69, 271}, {59, 369}, {16, 347}, {92, 279}, {90, 273}, {5, 329}, {61, 369}, {14, 322}, {113, 317}, {50, 383}, {76, 257}, {53, 376}, {104, 293}, {107, 294}, {120, 310}, {210, 412}, {71, 264}, {95, 272}, {77, 258}, {24, 328}, {96, 304}, {78, 286}, {77, 284}, {202, 411}, {105, 312}, {16, 322}, {8, 347}, {201, 410}, {99, 304}, {91, 264}, {50, 353}, {123, 296}, {22, 322}, {32, 372}, {28, 329}, {200, 413}, {41, 380}, {29, 328}, {122, 303}, {46, 376}, {89, 271}, {14, 342}, {194, 410}, {29, 325}, {123, 291}, {31, 326}, {202, 403}, {198, 415}, {49, 360}, {103, 318}, {72, 274}, {94, 260}, {84, 270}, {17, 330}, {21, 334}, {101, 312}, {121, 292}, {122, 295}, {18, 332}, {68, 282}, {120, 294}, {3, 348}, {74, 277}, {106, 309}, {24, 376}, {124, 284}, {92, 317}, {197, 420}, {119, 278}, {17, 371}, {55, 341}, {31, 381}, {13, 366}, {200, 427}, {197, 422}, {88, 315}, {84, 311}, {58, 345}, {26, 377}, {21, 374}, {63, 347}, {75, 303}, {198, 419}, {34, 324}, {52, 338}, {46, 328}, {28, 379}, {96, 263}, {86, 305}, {82, 309}, {31, 376}, {98, 266}, {69, 300}, {90, 307}, {41, 323}, {48, 346}, {120, 274}, {1, 362}, {114, 281}, {51, 351}, {199, 427}, {75, 295}, {66, 302}, {120, 276}, {32, 333}, {195, 430}, {73, 292}, {33, 332}, {61, 339}, {16, 383}, {204, 419}, {78, 289}, {76, 291}, {61, 338}, {38, 342}, {62, 334}, {19, 354}, {216, 425}, {81, 288}, {70, 311}, {37, 340}, {101, 276}, {41, 347}, {27, 360}, {39, 340}, {6, 370}, {216, 428}, {79, 315}, {39, 339}, {110, 282}, {116, 256}, {118, 258}, {39, 338}, {197, 432}, {70, 307}, {107, 286}, {4, 370}, {93, 299}, {85, 291}, {8, 383}, {25, 366}, {79, 311}, {22, 367}, {118, 271}, {9, 371}, {58, 320}, {13, 374}, {54, 333}, {123, 256}, {23, 363}, {209, 429}, {208, 428}, {79, 307}, {64, 316}, {56, 324}, {112, 268}, {36, 345}, {10, 372}, {215, 425}, {72, 310}, {39, 344}, {212, 427}, {95, 288}, {107, 276}, {119, 264}, {45, 429}, {189, 317}, {188, 317}, {15, 397}, {204, 334}, {34, 417}, {136, 267}, {10, 398}, {43, 431}, {16, 406}, {195, 325}, {19, 405}, {23, 400}, {165, 290}, {156, 283}, {12, 389}, {57, 432}, {7, 397}, {181, 319}, {35, 425}, {7, 396}, {195, 328}, {13, 390}, {20, 408}, {36, 424}, {136, 260}, {28, 401}, {202, 327}, {37, 426}, {129, 270}, {133, 266}, {135, 264}, {145, 286}, {153, 265}, {205, 349}, {189, 301}, {176, 288}, {20, 389}, {188, 301}, {59, 426}, {8, 410}, {178, 288}, {155, 265}, {60, 430}, {5, 406}, {196, 343}, {129, 276}, {212, 321}, {188, 297}, {148, 257}, {135, 273}, {199, 337}, {163, 309}, {150, 256}, {149, 259}, {28, 395}, {24, 385}, {210, 331}, {190, 295}, {56, 417}, {202, 336}, {60, 423}, {18, 398}, {131, 286}, {214, 331}, {164, 313}, {152, 262}, {195, 349}, {164, 314}, {25, 390}, {179, 300}, {48, 431}, {147, 268}, {156, 316}, {130, 291}, {183, 278}, {11, 425}, {184, 282}, {169, 267}, {160, 258}, {15, 429}, {131, 289}, {33, 386}, {182, 277}, {50, 401}, {12, 424}, {173, 265}, {56, 412}, {33, 388}, {175, 266}, {182, 272}, {192, 359}, {203, 364}, {54, 414}, {207, 359}, {205, 357}, {135, 303}, {142, 294}, {55, 414}, {180, 285}, {11, 417}, {201, 355}, {38, 396}, {141, 295}, {35, 392}, {168, 259}, {160, 267}, {178, 287}, {207, 354}, {196, 362}, {60, 396}, {142, 318}, {57, 392}, {193, 368}, {63, 398}, {19, 417}, {208, 354}, {179, 257}, {55, 388}, {140, 312}, {55, 386}, {193, 372}, {134, 307}, {159, 297}, {208, 358}, {204, 378}, {175, 280}, {176, 263}, {148, 300}, {138, 304}, {189, 262}, {20, 424}, {167, 283}, {45, 400}, {200, 373}, {176, 269}, {172, 273}, {170, 279}, {162, 287}, {17, 431}, {216, 358}, {201, 375}, {46, 400}, {43, 405}, {32, 414}, {133, 315}, {162, 285}, {185, 262}, {178, 269}, {186, 378}, {75, 394}, {82, 403}, {66, 384}, {151, 341}, {128, 323}, {69, 385}, {102, 418}, {116, 432}, {148, 336}, {149, 337}, {92, 409}, {166, 355}, {162, 359}, {139, 334}, {177, 375}, {153, 350}, {81, 409}, {68, 398}, {213, 287}, {98, 424}, {88, 402}, {97, 426}, {165, 366}, {161, 362}, {110, 421}, {91, 407}, {185, 372}, {65, 399}, {213, 283}, {67, 397}, {87, 408}, {181, 378}, {170, 357}, {111, 416}, {145, 350}, {117, 421}, {215, 263}, {163, 371}, {159, 335}, {78, 415}, {97, 432}, {167, 373}, {180, 358}, {177, 355}, {80, 387}, {182, 357}, {138, 345}, {143, 348}, {83, 391}, {211, 263}, {187, 367}, {157, 329}, {85, 384}, {196, 273}, {178, 359}, {159, 330}, {128, 342}, {216, 270}, {166, 368}, {186, 365}, {194, 282}, {81, 392}, {215, 270}, {198, 287}, {93, 388}, {84, 399}, {206, 277}, {95, 388}, {87, 395}, {154, 326}, {121, 421}, {125, 416}, {189, 352}, {183, 362}, {116, 426}, {206, 272}, {134, 344}, {161, 382}, {97, 385}, {126, 414}, {132, 356}, {144, 368}, {145, 369}, {141, 364}, {177, 336}, {200, 298}, {214, 308}, {67, 416}, {143, 363}, {184, 348}, {183, 339}, {155, 382}, {164, 321}, {158, 379}, {108, 394}, {210, 308}, {205, 299}, {105, 385}, {109, 389}, {113, 409}, {132, 365}, {169, 320}, {149, 380}, {172, 326}, {175, 325}, {99, 392}, {196, 303}, {182, 349}, {137, 354}, {106, 390}, {127, 403}, {138, 358}, {114, 415}, {212, 313}, {65, 431}, {79, 416}, {153, 374}, {102, 393}, {139, 356}, {135, 375}, {187, 331}, {156, 364}, {140, 381}, {203, 314}, {176, 321}, {113, 387}, {151, 357}, {103, 404}, {149, 353}, {165, 337}, {131, 373}, {188, 330}, {177, 327}, {161, 343}, {203, 316}, {134, 382}, {199, 319}, {187, 323}, {152, 352}, {95, 422}, {174, 343}, {168, 337}, {109, 404}, {86, 428}, {99, 409}, {93, 422}, {108, 407}, {118, 397}, {94, 418}, {198, 314}, {171, 343}, {166, 346}, {105, 405}, {140, 369}, {214, 299}, {160, 349}, {212, 298}, {99, 412}, {184, 327}, {150, 361}, {111, 400}, {148, 363} }>;

(II) A more general form is to represent the graph as the orbit of {213, 222} under the group generated by the following permutations:

a: (2, 183)(3, 192)(4, 67)(5, 211)(6, 111)(7, 200)(8, 216)(9, 199)(10, 112)(11, 63)(12, 118)(13, 85)(14, 96)(15, 212)(16, 215)(17, 181)(18, 159)(19, 68)(20, 69)(21, 166)(22, 176)(23, 198)(24, 156)(25, 130)(26, 139)(27, 189)(28, 37)(29, 42)(30, 171)(31, 102)(32, 147)(33, 126)(34, 170)(35, 41)(36, 77)(38, 138)(39, 155)(40, 82)(43, 186)(45, 164)(46, 203)(47, 163)(48, 204)(49, 188)(50, 84)(51, 74)(52, 209)(53, 141)(54, 152)(56, 83)(57, 73)(58, 124)(59, 157)(60, 180)(61, 173)(62, 127)(64, 195)(65, 115)(66, 106)(70, 109)(72, 161)(75, 101)(76, 100)(78, 177)(79, 158)(80, 92)(81, 187)(86, 174)(87, 97)(89, 146)(90, 103)(91, 145)(93, 151)(95, 117)(98, 160)(99, 128)(104, 178)(105, 132)(107, 135)(108, 140)(110, 137)(114, 202)(116, 168)(119, 153)(120, 196)(121, 197)(122, 129)(123, 165)(125, 190)(131, 201)(133, 169)(136, 175)(142, 172)(143, 162)(144, 185)(148, 213)(149, 150)(167, 179)(182, 214)(184, 207)(194, 208)(206, 210)(217, 432)(218, 430)(219, 398)(220, 381)(221, 255)(222, 257)(223, 318)(224, 248)(225, 327)(226, 297)(227, 278)(228, 252)(229, 358)(230, 368)(231, 261)(232, 292)(233, 329)(234, 349)(235, 380)(236, 244)(237, 416)(238, 417)(239, 249)(240, 295)(241, 301)(242, 372)(243, 374)(245, 373)(246, 330)(247, 305)(250, 268)(251, 320)(253, 406)(254, 262)(256, 337)(258, 424)(259, 361)(260, 325)(263, 322)(264, 350)(265, 339)(266, 267)(269, 293)(270, 383)(271, 389)(272, 331)(273, 294)(274, 343)(275, 419)(276, 303)(277, 308)(279, 324)(280, 418)(281, 403)(282, 354)(283, 300)(284, 345)(285, 423)(286, 375)(287, 363)(288, 367)(289, 355)(290, 352)(291, 366)(296, 427)(298, 397)(299, 357)(302, 309)(304, 342)(306, 321)(307, 404)(310, 362)(311, 379)(312, 394)(313, 429)(314, 400)(315, 402)(316, 328)(317, 360)(319, 371)(323, 392)(326, 393)(332, 335)(333, 420)(334, 346)(336, 415)(338, 411)(340, 401)(341, 388)(344, 382)(347, 425)(348, 359)(351, 370)(353, 399)(356, 377)(364, 376)(365, 405)(369, 407)(378, 431)(384, 390)(385, 408)(386, 414)(387, 409)(391, 412)(395, 426)(396, 413)(410, 428)(421, 422)
b: (3, 23)(4, 35)(5, 45)(6, 57)(7, 8)(9, 50)(10, 89)(11, 12)(13, 107)(15, 16)(17, 28)(18, 70)(19, 20)(21, 145)(24, 110)(25, 120)(26, 108)(27, 125)(29, 117)(31, 32)(33, 136)(34, 98)(36, 56)(37, 181)(39, 40)(41, 67)(42, 95)(43, 87)(44, 134)(46, 121)(47, 72)(48, 157)(49, 79)(51, 187)(53, 54)(55, 94)(58, 99)(59, 204)(61, 62)(63, 118)(64, 93)(65, 168)(66, 90)(68, 69)(73, 111)(74, 81)(75, 76)(77, 83)(80, 133)(82, 155)(84, 199)(85, 135)(88, 113)(91, 166)(92, 169)(97, 186)(100, 101)(102, 147)(103, 106)(105, 132)(109, 159)(112, 146)(115, 116)(122, 123)(124, 128)(126, 175)(127, 173)(129, 165)(130, 196)(137, 156)(139, 140)(141, 152)(142, 144)(148, 184)(149, 150)(151, 195)(154, 193)(158, 188)(160, 170)(161, 163)(164, 211)(167, 208)(172, 185)(179, 194)(189, 190)(192, 198)(197, 203)(200, 216)(207, 213)(212, 215)(217, 236)(218, 285)(219, 389)(220, 268)(221, 335)(222, 239)(223, 262)(224, 230)(225, 415)(226, 307)(227, 265)(228, 391)(229, 396)(231, 362)(232, 314)(233, 419)(234, 299)(235, 259)(237, 301)(238, 258)(240, 290)(241, 416)(242, 393)(243, 264)(244, 432)(245, 410)(246, 311)(247, 343)(248, 368)(249, 257)(250, 381)(251, 387)(252, 412)(253, 313)(254, 318)(255, 332)(256, 353)(260, 388)(261, 310)(263, 321)(266, 324)(267, 279)(269, 288)(270, 427)(271, 398)(272, 277)(273, 384)(274, 305)(275, 329)(276, 366)(278, 339)(280, 414)(281, 338)(282, 300)(283, 354)(284, 342)(286, 289)(287, 359)(291, 303)(292, 400)(293, 367)(294, 390)(295, 352)(296, 383)(297, 404)(298, 425)(302, 344)(304, 345)(306, 322)(308, 331)(309, 382)(312, 356)(315, 360)(316, 422)(317, 402)(319, 340)(320, 409)(323, 351)(325, 341)(326, 372)(327, 336)(328, 421)(330, 379)(333, 376)(334, 369)(337, 399)(346, 407)(347, 397)(348, 363)(349, 357)(350, 374)(355, 375)(358, 413)(361, 380)(364, 420)(365, 385)(370, 392)(371, 401)(373, 428)(377, 394)(378, 426)(386, 418)(395, 431)(403, 411)(405, 408)(406, 429)(417, 424)(423, 430)
c: (1, 2)(3, 8)(4, 12)(5, 16)(6, 20)(7, 23)(9, 17)(10, 32)(11, 35)(13, 40)(14, 22)(15, 45)(18, 54)(19, 57)(21, 62)(24, 69)(25, 47)(26, 76)(27, 49)(28, 50)(29, 77)(30, 86)(31, 89)(33, 55)(34, 81)(36, 58)(37, 101)(38, 104)(39, 107)(41, 73)(42, 64)(43, 116)(44, 106)(46, 118)(48, 123)(51, 124)(52, 131)(53, 70)(56, 99)(59, 140)(60, 143)(61, 145)(63, 121)(65, 150)(66, 144)(67, 111)(68, 110)(71, 119)(72, 120)(74, 98)(75, 108)(78, 114)(79, 125)(80, 113)(82, 163)(83, 117)(84, 129)(85, 166)(87, 115)(88, 133)(90, 142)(91, 135)(92, 126)(93, 95)(94, 136)(96, 138)(97, 105)(100, 181)(102, 141)(103, 134)(109, 158)(112, 189)(122, 157)(127, 130)(128, 187)(132, 186)(137, 197)(139, 204)(146, 190)(147, 152)(148, 179)(149, 168)(151, 170)(153, 183)(154, 172)(155, 161)(156, 203)(159, 188)(160, 195)(162, 178)(164, 167)(165, 199)(169, 175)(171, 209)(173, 196)(174, 202)(176, 180)(177, 201)(182, 205)(184, 194)(185, 193)(191, 210)(192, 207)(198, 213)(200, 212)(206, 214)(208, 211)(215, 216)(217, 380)(218, 269)(219, 301)(220, 295)(221, 402)(222, 419)(223, 393)(226, 254)(227, 231)(228, 308)(229, 348)(232, 354)(233, 239)(234, 277)(236, 361)(237, 389)(238, 421)(240, 311)(242, 262)(244, 408)(245, 336)(246, 290)(247, 403)(248, 273)(253, 428)(255, 280)(256, 431)(258, 328)(263, 358)(265, 362)(266, 320)(267, 325)(268, 352)(271, 376)(272, 299)(275, 296)(276, 340)(278, 374)(279, 341)(281, 289)(283, 314)(284, 293)(285, 288)(286, 338)(291, 346)(292, 347)(294, 344)(302, 390)(303, 407)(307, 318)(312, 426)(313, 373)(317, 335)(319, 366)(321, 413)(324, 409)(327, 410)(329, 383)(331, 391)(332, 414)(333, 398)(339, 350)(342, 367)(343, 411)(353, 395)(356, 378)(363, 396)(368, 384)(370, 424)(392, 417)(397, 400)(405, 432)
d: (1, 3, 67, 112)(2, 5, 111, 159)(4, 98, 96, 167)(6, 64, 176, 213)(7, 26, 130, 177)(8, 24, 189, 71)(9, 127, 171, 23)(10, 172, 170, 59)(11, 25, 28, 51)(12, 36, 138, 200)(13, 50, 29, 35)(14, 43, 44, 173)(15, 48, 163, 202)(16, 46, 188, 153)(17, 82, 209, 45)(18, 154, 83, 140)(19, 47, 157, 124)(20, 58, 180, 212)(21, 122, 195, 57)(22, 65, 106, 155)(27, 103, 187, 129)(30, 87, 88, 34)(31, 92, 145, 63)(32, 90, 151, 37)(33, 61, 68, 89)(38, 105, 66, 91)(39, 110, 70, 55)(40, 108, 77, 137)(41, 53, 113, 107)(42, 178, 198, 203)(49, 142, 128, 101)(52, 132, 169, 93)(54, 134, 117, 84)(56, 86, 168, 133)(60, 97, 185, 135)(62, 75, 160, 197)(69, 152, 119, 194)(72, 121, 79, 126)(73, 125, 80, 120)(74, 162, 164, 156)(76, 85, 201, 179)(78, 115, 94, 81)(95, 114, 186, 136)(99, 131, 149, 175)(100, 158, 214, 215)(102, 206, 207, 181)(104, 150, 144, 161)(109, 210, 216, 165)(116, 193, 196, 143)(118, 147, 183, 184)(123, 166, 174, 148)(139, 190, 205, 211)(141, 182, 192, 204)(146, 191, 208, 199)(217, 315, 324, 274)(218, 321, 283, 370)(219, 261, 329, 351)(220, 228, 354, 319)(221, 412, 428, 337)(222, 237, 234, 263)(223, 357, 233, 250)(224, 238, 381, 332)(225, 378, 418, 272)(226, 248, 342, 312)(227, 406, 400, 330)(229, 385, 262, 264)(230, 303, 430, 432)(231, 327, 397, 268)(232, 334, 295, 349)(235, 390, 401, 293)(236, 297, 265, 322)(239, 246, 393, 391)(240, 360, 294, 323)(241, 318, 387, 276)(242, 362, 348, 361)(243, 410, 300, 352)(244, 260, 288, 415)(245, 257, 291, 355)(247, 336, 296, 346)(249, 258, 420, 278)(251, 417, 305, 395)(252, 358, 427, 389)(253, 356, 402, 299)(254, 382, 367, 399)(255, 388, 338, 365)(256, 368, 343, 363)(259, 266, 304, 373)(267, 422, 281, 394)(269, 287, 314, 316)(270, 290, 404, 331)(271, 386, 339, 282)(273, 423, 426, 372)(275, 371, 403, 429)(277, 359, 419, 364)(279, 369, 398, 326)(280, 409, 286, 380)(284, 405, 302, 407)(285, 313, 408, 320)(289, 353, 325, 392)(292, 416, 335, 310)(298, 424, 345, 413)(301, 374, 383, 328)(306, 431, 309, 411)(307, 341, 340, 333)(308, 425, 366, 379)(311, 414, 344, 421)(317, 350, 347, 376)(375, 396, 377, 384)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 432, 170 ]
432
-1 231 310 261 362
-2 265 310 227 261
-3 292 348 327 329
-4 298 237 259 370
-5 322 292 329 406
-6 244 237 314 370
-7 396 397 245 296
-8 410 347 229 383
-9 330 256 371 296
-10 332 398 250 372
-11 235 425 219 417
-12 298 389 259 424
-13 374 289 366 390
-14 342 322 284 306
-15 429 397 306 296
-16 322 347 383 406
-17 275 330 431 371
-18 332 398 246 226
-19 354 405 219 417
-20 408 389 424 283
-21 374 289 334 230
-22 322 367 293 306
-23 275 363 400 336
-24 385 376 300 328
-25 366 390 261 305
-26 377 257 268 346
-27 254 290 360 241
-28 379 401 329 395
-29 308 325 293 328
-30 253 313 305 274
-31 376 280 326 381
-32 333 414 250 372
-33 386 332 388 279
-34 299 324 285 417
-35 235 301 392 425
-36 266 345 424 252
-37 233 311 426 340
-38 396 342 229 284
-39 344 338 339 340
-40 319 278 302 281
-41 323 347 380 241
-42 277 269 260 316
-43 431 312 236 405
-44 297 309 302 226
-45 275 429 400 306
-46 376 400 236 328
-47 319 302 261 305
-48 275 431 268 346
-49 246 226 360 241
-50 353 379 401 383
-51 308 293 251 351
-52 253 313 281 338
-53 376 280 240 318
-54 254 333 290 414
-55 341 386 388 414
-56 324 412 304 417
-57 232 432 301 392
-58 320 345 370 252
-59 233 369 381 426
-60 396 430 423 229
-61 224 369 338 339
-62 278 334 281 230
-63 398 347 380 238
-64 234 260 316 218
-65 431 399 235 236
-66 302 226 262 384
-67 397 361 416 351
-68 365 398 238 282
-69 385 300 258 271
-70 255 311 271 307
-71 264 374 243 350
-72 310 344 274 340
-73 323 292 217 241
-74 320 277 269 370
-75 303 249 295 394
-76 352 377 257 291
-77 267 258 228 284
-78 286 289 225 415
-79 311 315 416 307
-80 387 324 335 360
-81 288 409 392 272
-82 309 227 403 371
-83 342 279 391 238
-84 311 399 270 340
-85 243 355 291 384
-86 305 274 373 428
-87 408 356 217 395
-88 320 402 315 251
-89 255 271 326 381
-90 223 344 273 307
-91 264 407 375 248
-92 332 409 279 317
-93 299 388 422 285
-94 418 280 325 260
-95 288 388 422 272
-96 321 345 304 263
-97 385 377 432 426
-98 266 234 424 218
-99 409 412 304 392
-100 222 366 290 356
-101 276 312 239 240
-102 220 418 364 393
-103 294 382 404 318
-104 363 367 293 348
-105 385 377 312 405
-106 297 254 309 390
-107 286 276 294 350
-108 220 407 249 394
-109 221 389 379 404
-110 365 333 421 282
-111 400 236 416 351
-112 242 268 335 219
-113 387 409 360 317
-114 225 281 338 415
-115 353 244 378 380
-116 256 432 426 361
-117 341 331 421 367
-118 397 258 271 361
-119 264 243 278 339
-120 276 310 294 274
-121 333 421 292 217
-122 353 303 295 383
-123 352 256 291 296
-124 228 251 284 351
-125 315 240 416 318
-126 341 324 335 414
-127 346 368 227 403
-128 342 387 323 391
-129 276 399 270 240
-130 231 247 291 384
-131 286 289 373 428
-132 408 365 356 394
-133 221 266 315 251
-134 344 382 404 307
-135 264 375 303 273
-136 418 255 267 260
-137 354 420 422 405
-138 345 358 413 304
-139 222 334 356 250
-140 312 369 381 239
-141 418 364 223 295
-142 248 294 393 318
-143 363 430 423 348
-144 242 254 368 390
-145 286 224 369 350
-146 220 221 389 393
-147 242 386 420 268
-148 363 300 257 336
-149 353 259 380 337
-150 256 399 235 361
-151 341 421 357 423
-152 352 386 420 262
-153 374 265 227 350
-154 224 248 326 393
-155 265 411 401 382
-156 364 408 283 316
-157 220 407 329 395
-158 379 237 402 404
-159 297 330 335 219
-160 430 267 258 349
-161 343 401 382 362
-162 287 359 218 285
-163 231 309 247 371
-164 419 321 313 314
-165 366 290 337 427
-166 243 355 346 368
-167 222 413 283 373
-168 259 337 217 395
-169 320 255 267 402
-170 279 357 423 238
-171 429 343 247 406
-172 223 224 326 273
-173 407 265 411 248
-174 343 245 410 247
-175 221 266 280 325
-176 288 321 269 263
-177 375 355 336 327
-178 287 288 269 359
-179 396 245 300 257
-180 358 413 218 285
-181 319 419 246 378
-182 277 357 272 349
-183 231 278 339 362
-184 249 282 348 327
-185 262 372 230 384
-186 244 365 378 394
-187 331 387 323 367
-188 297 330 301 317
-189 352 301 262 317
-190 223 237 402 295
-191 412 391 228 252
-192 232 233 225 359
-193 242 368 372 230
-194 410 249 282 229
-195 430 325 349 328
-196 343 303 273 362
-197 232 420 432 422
-198 287 419 314 415
-199 319 246 337 427
-200 298 413 427 373
-201 375 245 355 410
-202 411 336 403 327
-203 364 244 314 316
-204 419 334 378 250
-205 299 234 357 349
-206 277 391 228 272
-207 354 225 359 239
-208 354 358 239 428
-209 429 411 403 406
-210 308 331 412 252
-211 253 232 233 263
-212 298 321 313 427
-213 287 222 283 415
-214 308 331 299 234
-215 253 270 425 263
-216 270 358 425 428
-217 121 168 73 87
-218 180 162 64 98
-219 11 112 159 19
-220 102 146 157 108
-221 133 146 109 175
-222 100 167 213 139
-223 90 190 172 141
-224 154 145 61 172
-225 78 114 192 207
-226 44 66 49 18
-227 2 82 127 153
-228 77 124 191 206
-229 38 60 194 8
-230 193 62 185 21
-231 1 183 130 163
-232 57 211 192 197
-233 211 37 59 192
-234 214 205 64 98
-235 11 35 150 65
-236 111 46 43 65
-237 190 4 158 6
-238 68 170 83 63
-239 101 140 207 208
-240 101 125 129 53
-241 27 49 73 41
-242 144 112 147 193
-243 166 71 85 119
-244 115 203 6 186
-245 179 201 7 174
-246 199 49 181 18
-247 171 130 163 174
-248 154 91 173 142
-249 194 184 75 108
-250 204 139 10 32
-251 88 133 124 51
-252 210 36 58 191
-253 211 215 30 52
-254 144 27 106 54
-255 89 70 136 169
-256 123 116 150 9
-257 179 26 148 76
-258 77 69 160 118
-259 12 168 4 149
-260 136 94 42 64
-261 1 2 25 47
-262 66 189 152 185
-263 176 211 215 96
-264 91 135 71 119
-265 155 2 173 153
-266 133 36 98 175
-267 77 136 169 160
-268 112 26 48 147
-269 176 178 74 42
-270 215 84 216 129
-271 89 69 70 118
-272 81 182 95 206
-273 90 135 172 196
-274 72 30 86 120
-275 23 45 48 17
-276 101 107 129 120
-277 182 74 206 42
-278 40 62 183 119
-279 33 92 170 83
-280 94 31 53 175
-281 114 40 62 52
-282 110 68 194 184
-283 156 167 213 20
-284 77 14 124 38
-285 34 180 93 162
-286 78 145 107 131
-287 198 178 213 162
-288 176 178 81 95
-289 78 13 21 131
-290 165 100 27 54
-291 123 85 130 76
-292 121 3 5 73
-293 22 104 29 51
-294 103 107 120 142
-295 122 190 75 141
-296 123 15 7 9
-297 44 188 159 106
-298 12 200 212 4
-299 34 93 214 205
-300 24 69 179 148
-301 188 35 57 189
-302 44 66 47 40
-303 122 135 75 196
-304 99 56 138 96
-305 25 47 30 86
-306 22 45 14 15
-307 79 90 134 70
-308 210 214 29 51
-309 44 82 106 163
-310 1 2 72 120
-311 79 37 70 84
-312 101 105 140 43
-313 212 30 52 164
-314 198 203 6 164
-315 88 133 79 125
-316 156 203 42 64
-317 188 189 113 92
-318 103 125 53 142
-319 199 47 181 40
-320 88 58 169 74
-321 176 212 96 164
-322 22 14 5 16
-323 187 73 128 41
-324 34 56 80 126
-325 94 29 195 175
-326 154 89 172 31
-327 177 3 202 184
-328 24 46 29 195
-329 3 157 5 28
-330 188 159 17 9
-331 187 210 214 117
-332 33 92 18 10
-333 110 121 32 54
-334 204 62 139 21
-335 112 80 126 159
-336 23 177 202 148
-337 165 199 168 149
-338 114 39 61 52
-339 39 61 183 119
-340 37 39 72 84
-341 55 126 117 151
-342 14 38 83 128
-343 171 161 174 196
-344 90 134 39 72
-345 36 58 138 96
-346 166 26 48 127
-347 16 8 41 63
-348 143 3 104 184
-349 160 182 205 195
-350 145 71 107 153
-351 67 111 124 51
-352 123 189 152 76
-353 122 115 50 149
-354 137 19 207 208
-355 166 177 201 85
-356 132 100 139 87
-357 170 182 205 151
-358 180 138 216 208
-359 178 192 162 207
-360 80 113 27 49
-361 67 116 150 118
-362 1 161 183 196
-363 143 23 104 148
-364 156 102 203 141
-365 110 132 68 186
-366 165 100 13 25
-367 22 187 104 117
-368 144 166 127 193
-369 145 59 61 140
-370 58 4 6 74
-371 82 17 9 163
-372 193 185 10 32
-373 167 200 86 131
-374 13 71 21 153
-375 177 91 135 201
-376 24 46 31 53
-377 26 105 97 76
-378 115 181 204 186
-379 158 28 50 109
-380 115 149 41 63
-381 89 59 140 31
-382 155 134 103 161
-383 122 16 50 8
-384 66 85 130 185
-385 24 69 105 97
-386 33 55 147 152
-387 187 80 113 128
-388 33 55 93 95
-389 12 146 20 109
-390 144 13 25 106
-391 191 83 128 206
-392 99 35 57 81
-393 154 102 146 142
-394 132 75 108 186
-395 157 168 28 87
-396 179 38 60 7
-397 67 15 7 118
-398 68 18 63 10
-399 84 150 129 65
-400 23 45 111 46
-401 155 28 50 161
-402 88 190 158 169
-403 209 202 82 127
-404 134 103 158 109
-405 137 105 19 43
-406 209 5 16 171
-407 91 157 173 108
-408 132 156 20 87
-409 99 113 81 92
-410 201 194 8 174
-411 209 155 202 173
-412 99 56 210 191
-413 167 200 180 138
-414 55 126 32 54
-415 198 78 114 213
-416 67 111 79 125
-417 11 34 56 19
-418 102 136 94 141
-419 198 181 204 164
-420 147 137 152 197
-421 110 121 117 151
-422 93 137 95 197
-423 143 60 170 151
-424 12 36 20 98
-425 11 35 215 216
-426 37 59 116 97
-427 165 199 200 212
-428 216 86 131 208
-429 209 45 15 171
-430 143 60 160 195
-431 48 17 43 65
-432 57 116 97 197
0

**************