C4graphGraph forms for C4 [ 432, 175 ] = PL(ATD[54,9]#DCyc[4])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 432, 175 ] = PL(ATD[54,9]#DCyc[4]).

(I) Following is a form readable by MAGMA:

g:=Graph<432|{ {208, 217}, {202, 223}, {207, 217}, {194, 219}, {193, 224}, {204, 232}, {196, 238}, {196, 239}, {211, 248}, {195, 239}, {213, 248}, {193, 240}, {216, 234}, {192, 248}, {194, 251}, {215, 234}, {159, 223}, {183, 247}, {163, 226}, {172, 238}, {186, 248}, {181, 246}, {154, 220}, {183, 241}, {153, 222}, {185, 241}, {160, 234}, {144, 222}, {185, 247}, {163, 237}, {161, 239}, {176, 224}, {188, 236}, {138, 219}, {179, 225}, {161, 245}, {162, 247}, {181, 224}, {142, 217}, {172, 251}, {131, 218}, {184, 225}, {169, 243}, {178, 232}, {164, 255}, {155, 251}, {140, 232}, {142, 232}, {150, 241}, {158, 245}, {130, 237}, {139, 251}, {148, 229}, {154, 233}, {135, 243}, {128, 245}, {129, 247}, {171, 221}, {174, 217}, {136, 240}, {141, 246}, {153, 226}, {156, 225}, {152, 230}, {117, 245}, {126, 254}, {95, 219}, {114, 246}, {116, 240}, {100, 226}, {109, 229}, {119, 254}, {98, 239}, {99, 237}, {119, 249}, {99, 243}, {75, 218}, {115, 226}, {125, 236}, {115, 224}, {96, 244}, {113, 230}, {125, 234}, {121, 225}, {70, 220}, {101, 255}, {117, 233}, {83, 241}, {81, 242}, {66, 230}, {73, 237}, {123, 221}, {65, 233}, {70, 238}, {66, 235}, {117, 220}, {83, 252}, {70, 244}, {86, 229}, {92, 235}, {93, 228}, {73, 243}, {92, 230}, {86, 236}, {87, 235}, {96, 220}, {94, 227}, {31, 221}, {35, 231}, {48, 244}, {40, 236}, {60, 249}, {53, 242}, {18, 218}, {47, 231}, {23, 223}, {45, 228}, {20, 222}, {55, 252}, {46, 227}, {33, 238}, {38, 233}, {44, 254}, {35, 240}, {32, 244}, {42, 252}, {60, 235}, {37, 249}, {3, 221}, {59, 229}, {37, 250}, {28, 254}, {19, 246}, {58, 223}, {26, 255}, {26, 252}, {3, 228}, {4, 227}, {9, 227}, {48, 219}, {53, 222}, {21, 250}, {43, 218}, {15, 253}, {14, 253}, {6, 242}, {19, 231}, {11, 255}, {9, 253}, {8, 253}, {4, 242}, {14, 249}, {31, 231}, {31, 228}, {6, 250}, {4, 250}, {104, 360}, {74, 328}, {157, 415}, {83, 337}, {3, 256}, {14, 269}, {114, 369}, {104, 364}, {169, 429}, {112, 372}, {135, 387}, {5, 256}, {79, 330}, {68, 321}, {128, 389}, {135, 386}, {144, 405}, {46, 296}, {168, 430}, {145, 407}, {76, 330}, {50, 308}, {105, 367}, {124, 378}, {60, 315}, {92, 347}, {101, 354}, {15, 263}, {28, 276}, {104, 352}, {32, 297}, {51, 314}, {35, 298}, {65, 331}, {18, 281}, {168, 419}, {107, 352}, {8, 260}, {167, 427}, {154, 406}, {153, 405}, {149, 409}, {173, 416}, {9, 263}, {174, 416}, {166, 424}, {149, 411}, {22, 280}, {139, 389}, {75, 324}, {151, 408}, {7, 279}, {42, 314}, {108, 380}, {126, 366}, {21, 260}, {41, 312}, {108, 381}, {59, 297}, {146, 384}, {128, 402}, {20, 263}, {61, 302}, {53, 294}, {105, 378}, {131, 400}, {4, 272}, {185, 429}, {157, 393}, {41, 317}, {24, 268}, {111, 379}, {74, 351}, {76, 345}, {136, 413}, {27, 268}, {147, 388}, {75, 348}, {69, 338}, {54, 289}, {122, 365}, {144, 391}, {103, 383}, {2, 283}, {186, 419}, {79, 342}, {9, 272}, {122, 355}, {184, 418}, {189, 423}, {1, 282}, {101, 382}, {62, 290}, {180, 424}, {151, 395}, {106, 375}, {136, 405}, {38, 312}, {73, 343}, {57, 295}, {59, 292}, {176, 431}, {94, 321}, {75, 340}, {102, 377}, {137, 425}, {177, 401}, {138, 426}, {25, 312}, {190, 415}, {89, 376}, {84, 373}, {78, 367}, {77, 364}, {57, 280}, {121, 344}, {127, 350}, {69, 359}, {186, 408}, {102, 324}, {36, 263}, {64, 355}, {40, 268}, {63, 283}, {105, 333}, {118, 338}, {67, 358}, {98, 327}, {77, 360}, {81, 375}, {94, 376}, {111, 329}, {120, 350}, {26, 317}, {61, 282}, {43, 268}, {30, 310}, {85, 381}, {54, 286}, {37, 269}, {134, 430}, {143, 423}, {80, 377}, {191, 406}, {172, 389}, {89, 371}, {169, 387}, {103, 333}, {124, 342}, {139, 417}, {141, 423}, {17, 314}, {137, 418}, {57, 277}, {100, 328}, {10, 295}, {171, 390}, {16, 317}, {103, 330}, {110, 323}, {22, 312}, {133, 427}, {138, 420}, {48, 287}, {103, 343}, {174, 414}, {160, 400}, {13, 316}, {24, 297}, {120, 329}, {20, 294}, {43, 281}, {102, 340}, {115, 321}, {1, 306}, {178, 385}, {173, 414}, {90, 361}, {76, 383}, {62, 269}, {39, 275}, {148, 416}, {80, 356}, {78, 378}, {165, 400}, {183, 386}, {11, 317}, {30, 296}, {16, 295}, {176, 391}, {88, 367}, {82, 357}, {40, 287}, {100, 339}, {107, 348}, {44, 276}, {95, 359}, {73, 369}, {50, 267}, {87, 366}, {84, 366}, {159, 421}, {99, 345}, {7, 316}, {189, 390}, {87, 364}, {123, 320}, {24, 292}, {68, 376}, {44, 272}, {33, 285}, {102, 346}, {52, 265}, {123, 325}, {180, 394}, {167, 409}, {110, 337}, {180, 395}, {13, 333}, {209, 401}, {198, 390}, {95, 287}, {90, 282}, {27, 346}, {71, 262}, {37, 356}, {53, 375}, {200, 394}, {80, 274}, {116, 310}, {29, 350}, {200, 395}, {88, 283}, {40, 363}, {10, 332}, {85, 275}, {62, 376}, {39, 353}, {33, 359}, {22, 336}, {58, 381}, {201, 398}, {200, 399}, {106, 301}, {10, 323}, {86, 287}, {47, 358}, {100, 301}, {79, 261}, {117, 319}, {33, 362}, {42, 353}, {112, 315}, {92, 272}, {119, 315}, {10, 327}, {56, 373}, {52, 377}, {51, 382}, {32, 365}, {203, 388}, {52, 356}, {60, 364}, {2, 339}, {51, 354}, {23, 326}, {113, 288}, {121, 296}, {61, 367}, {216, 394}, {80, 258}, {71, 277}, {16, 323}, {87, 260}, {20, 320}, {65, 277}, {52, 352}, {25, 332}, {97, 308}, {118, 291}, {12, 346}, {63, 361}, {56, 366}, {49, 359}, {99, 309}, {108, 308}, {192, 408}, {125, 293}, {64, 281}, {78, 279}, {101, 316}, {13, 343}, {197, 415}, {45, 374}, {76, 279}, {70, 285}, {49, 362}, {23, 331}, {214, 394}, {210, 398}, {205, 401}, {17, 332}, {210, 399}, {48, 365}, {7, 345}, {43, 373}, {25, 327}, {116, 298}, {47, 368}, {77, 274}, {39, 326}, {209, 432}, {201, 424}, {197, 420}, {50, 336}, {199, 421}, {195, 417}, {107, 265}, {120, 282}, {126, 284}, {5, 358}, {109, 270}, {122, 281}, {36, 320}, {127, 283}, {18, 372}, {65, 295}, {62, 344}, {42, 332}, {21, 371}, {54, 337}, {97, 262}, {74, 301}, {90, 306}, {194, 426}, {3, 361}, {97, 267}, {89, 307}, {69, 303}, {17, 379}, {29, 374}, {119, 284}, {5, 361}, {69, 297}, {63, 339}, {38, 331}, {67, 302}, {27, 373}, {31, 368}, {78, 289}, {64, 303}, {124, 275}, {11, 379}, {95, 303}, {110, 286}, {118, 262}, {122, 266}, {1, 368}, {58, 331}, {21, 356}, {2, 368}, {68, 310}, {34, 336}, {32, 338}, {24, 363}, {93, 302}, {82, 289}, {45, 350}, {61, 329}, {209, 421}, {208, 420}, {97, 277}, {91, 303}, {77, 313}, {116, 256}, {121, 269}, {79, 314}, {23, 353}, {88, 302}, {38, 336}, {44, 347}, {213, 418}, {199, 432}, {12, 372}, {74, 306}, {51, 330}, {123, 257}, {126, 260}, {8, 371}, {89, 290}, {29, 358}, {26, 353}, {2, 383}, {1, 383}, {146, 274}, {170, 299}, {212, 341}, {182, 311}, {16, 402}, {179, 305}, {30, 412}, {130, 257}, {214, 341}, {205, 334}, {166, 293}, {160, 292}, {175, 299}, {12, 393}, {208, 341}, {177, 308}, {175, 298}, {41, 428}, {22, 403}, {142, 267}, {11, 397}, {171, 301}, {158, 280}, {15, 392}, {140, 267}, {8, 384}, {34, 426}, {18, 410}, {148, 285}, {197, 335}, {206, 324}, {36, 431}, {154, 273}, {170, 294}, {36, 425}, {203, 326}, {155, 278}, {141, 256}, {6, 392}, {189, 307}, {14, 384}, {134, 264}, {49, 417}, {205, 349}, {197, 341}, {146, 258}, {145, 257}, {55, 422}, {174, 319}, {5, 407}, {27, 393}, {133, 279}, {7, 404}, {15, 412}, {28, 392}, {192, 340}, {12, 410}, {56, 430}, {132, 274}, {157, 266}, {202, 349}, {167, 304}, {162, 309}, {50, 426}, {164, 316}, {132, 284}, {13, 404}, {188, 293}, {30, 391}, {6, 412}, {54, 428}, {170, 305}, {192, 347}, {17, 397}, {137, 276}, {189, 288}, {177, 300}, {155, 262}, {140, 273}, {19, 396}, {168, 264}, {210, 370}, {59, 410}, {164, 261}, {158, 319}, {132, 293}, {46, 396}, {199, 357}, {163, 257}, {137, 299}, {133, 289}, {147, 311}, {215, 370}, {34, 388}, {212, 370}, {206, 360}, {139, 300}, {204, 363}, {191, 280}, {187, 275}, {202, 354}, {190, 278}, {46, 391}, {152, 305}, {138, 291}, {57, 403}, {148, 318}, {63, 404}, {55, 411}, {207, 355}, {169, 261}, {151, 315}, {191, 273}, {35, 396}, {159, 304}, {156, 307}, {45, 386}, {143, 288}, {29, 429}, {184, 264}, {49, 385}, {130, 306}, {142, 319}, {184, 265}, {179, 258}, {188, 271}, {208, 355}, {19, 423}, {156, 296}, {55, 387}, {39, 403}, {25, 428}, {133, 304}, {56, 398}, {58, 397}, {193, 374}, {47, 407}, {196, 380}, {152, 288}, {166, 284}, {41, 402}, {201, 370}, {179, 264}, {141, 310}, {34, 414}, {185, 261}, {178, 270}, {173, 273}, {132, 313}, {190, 259}, {136, 309}, {152, 294}, {180, 266}, {170, 276}, {28, 419}, {93, 413}, {104, 424}, {96, 417}, {206, 271}, {187, 378}, {131, 322}, {71, 388}, {201, 266}, {181, 374}, {140, 335}, {91, 415}, {181, 369}, {85, 403}, {166, 352}, {150, 337}, {160, 360}, {82, 411}, {183, 382}, {159, 342}, {155, 338}, {129, 328}, {66, 392}, {143, 325}, {84, 408}, {207, 259}, {86, 410}, {72, 389}, {109, 416}, {90, 404}, {146, 348}, {128, 334}, {64, 399}, {209, 286}, {144, 351}, {172, 380}, {204, 285}, {211, 258}, {91, 393}, {94, 396}, {98, 432}, {118, 420}, {134, 340}, {113, 418}, {205, 286}, {182, 357}, {120, 427}, {91, 399}, {215, 259}, {194, 278}, {127, 427}, {145, 325}, {191, 362}, {129, 343}, {216, 270}, {149, 323}, {143, 344}, {68, 412}, {214, 270}, {153, 321}, {85, 397}, {113, 425}, {71, 414}, {214, 271}, {207, 278}, {187, 354}, {178, 363}, {124, 421}, {127, 422}, {72, 402}, {212, 271}, {216, 259}, {115, 431}, {213, 265}, {165, 377}, {130, 351}, {134, 347}, {67, 413}, {72, 406}, {112, 430}, {84, 395}, {150, 329}, {93, 386}, {131, 348}, {195, 291}, {66, 419}, {96, 385}, {173, 335}, {211, 305}, {151, 372}, {145, 375}, {187, 349}, {161, 327}, {114, 405}, {203, 300}, {196, 291}, {165, 322}, {215, 318}, {162, 328}, {212, 318}, {206, 292}, {175, 325}, {168, 322}, {167, 333}, {107, 384}, {210, 313}, {182, 349}, {171, 320}, {106, 390}, {198, 298}, {109, 385}, {111, 387}, {125, 400}, {198, 299}, {150, 379}, {67, 429}, {147, 381}, {114, 413}, {195, 300}, {176, 351}, {161, 334}, {156, 371}, {147, 380}, {105, 409}, {199, 311}, {163, 339}, {157, 365}, {149, 357}, {129, 369}, {190, 335}, {211, 290}, {200, 313}, {164, 342}, {204, 318}, {98, 406}, {193, 309}, {158, 362}, {111, 411}, {83, 422}, {198, 307}, {110, 409}, {213, 290}, {177, 326}, {175, 344}, {72, 432}, {188, 324}, {186, 322}, {182, 334}, {81, 425}, {135, 382}, {202, 304}, {162, 345}, {203, 311}, {106, 407}, {108, 401}, {81, 431}, {88, 422}, {82, 428}, {112, 398}, {165, 346} }>;

(II) A more general form is to represent the graph as the orbit of {208, 217} under the group generated by the following permutations:

a: (3, 5)(4, 9)(6, 15)(8, 21)(12, 18)(14, 37)(20, 53)(27, 43)(29, 45)(31, 47)(36, 81)(51, 79)(52, 107)(64, 91)(67, 93)(72, 128)(75, 102)(80, 146)(98, 161)(101, 164)(106, 171)(117, 154)(122, 157)(123, 145)(124, 187)(131, 165)(135, 169)(140, 142)(158, 191)(159, 202)(173, 174)(182, 199)(183, 185)(190, 207)(197, 208)(205, 209)(217, 335)(218, 346)(221, 407)(228, 358)(242, 263)(245, 406)(250, 253)(261, 382)(273, 319)(281, 393)(320, 375)(334, 432)(342, 354)(348, 377)(349, 421)(355, 415)(356, 384)(386, 429)
b: (1, 3, 2, 5)(4, 11, 9, 26)(6, 17, 15, 42)(7, 19)(8, 23, 21, 58)(10, 28)(12, 33, 18, 49)(13, 35)(14, 39, 37, 85)(16, 44)(20, 55, 53, 111)(22, 60)(24, 48)(25, 66)(27, 70, 43, 96)(29, 74, 45, 100)(30, 51, 68, 79)(31, 63, 47, 90)(32, 40)(34, 77)(36, 83, 81, 150)(38, 87)(41, 92)(46, 101, 94, 164)(50, 104)(52, 108, 107, 177)(54, 113)(56, 117, 84, 154)(57, 119)(59, 95)(61, 123, 88, 145)(62, 124, 121, 187)(64, 109, 91, 148)(65, 126)(67, 130, 93, 163)(69, 86)(71, 132)(72, 134, 128, 192)(73, 136)(75, 139, 102, 172)(76, 141)(78, 143)(80, 147, 146, 203)(82, 152)(89, 159, 156, 202)(97, 166)(98, 168, 161, 186)(99, 114)(103, 116)(105, 175)(106, 120, 171, 127)(110, 137)(112, 158, 151, 191)(115, 185, 176, 183)(118, 125)(122, 178, 157, 204)(129, 193)(131, 195, 165, 196)(133, 189)(135, 153, 169, 144)(138, 160)(140, 201, 142, 180)(149, 170)(155, 188)(162, 181)(167, 198)(173, 210, 174, 200)(179, 182, 211, 199)(184, 205, 213, 209)(190, 212, 207, 214)(194, 206)(197, 215, 208, 216)(217, 394, 335, 370)(218, 417, 346, 238)(219, 292)(220, 373)(221, 283, 407, 282)(222, 387)(223, 371)(224, 247)(225, 349, 290, 421)(226, 429, 351, 386)(227, 255)(228, 339, 358, 306)(229, 303)(230, 428)(231, 404)(232, 266)(233, 366)(234, 420)(235, 312)(236, 338)(237, 413)(239, 322)(240, 343)(241, 431)(242, 379, 263, 252)(243, 405)(244, 268)(245, 408, 406, 430)(246, 345)(248, 432, 264, 334)(249, 403)(250, 397, 253, 353)(251, 324)(254, 295)(256, 383)(257, 302)(258, 311)(259, 341)(260, 331)(261, 391, 382, 321)(262, 293)(265, 401)(267, 424)(269, 275)(270, 415, 318, 355)(271, 278)(272, 317)(273, 398, 319, 395)(274, 388)(276, 323)(277, 284)(279, 423)(280, 315)(281, 385, 393, 285)(286, 418)(287, 297)(288, 289)(291, 400)(294, 411)(296, 354, 376, 342)(298, 333)(299, 409)(300, 377, 380, 348)(301, 350)(304, 307)(305, 357)(308, 352)(309, 369)(310, 330)(313, 414)(314, 412)(316, 396)(320, 422, 375, 329)(325, 367)(326, 356, 381, 384)(327, 419)(328, 374)(332, 392)(336, 364)(337, 425)(340, 389)(344, 378)(347, 402)(359, 410)(360, 426)(361, 368)(362, 372)(363, 365)(390, 427)(399, 416)
c: (3, 13)(4, 25)(5, 7)(6, 41)(8, 57)(9, 10)(11, 30)(12, 48)(14, 65)(15, 16)(17, 46)(18, 32)(19, 51)(20, 110)(21, 22)(23, 62)(24, 64)(26, 68)(27, 95)(28, 72)(29, 99)(31, 103)(33, 56)(34, 52)(35, 79)(36, 149)(37, 38)(39, 89)(40, 91)(42, 94)(43, 69)(44, 98)(45, 73)(47, 76)(49, 84)(50, 80)(53, 54)(55, 115)(58, 121)(59, 122)(60, 117)(61, 74)(66, 128)(67, 162)(70, 112)(71, 107)(75, 118)(77, 142)(78, 106)(81, 82)(83, 153)(85, 156)(86, 157)(87, 158)(88, 100)(92, 161)(93, 129)(96, 151)(97, 146)(101, 141)(102, 138)(104, 174)(105, 171)(108, 179)(109, 180)(111, 176)(113, 182)(114, 183)(116, 164)(119, 154)(120, 130)(123, 167)(124, 198)(125, 190)(126, 191)(127, 163)(131, 155)(132, 140)(133, 145)(134, 196)(135, 181)(136, 185)(137, 199)(139, 186)(143, 202)(144, 150)(147, 184)(148, 201)(152, 205)(159, 175)(160, 207)(165, 194)(166, 173)(168, 172)(169, 193)(170, 209)(177, 211)(178, 200)(187, 189)(188, 197)(192, 195)(203, 213)(204, 210)(206, 208)(217, 360)(218, 338)(219, 346)(220, 315)(221, 333)(222, 337)(223, 344)(224, 387)(225, 381)(226, 422)(227, 332)(228, 343)(229, 266)(230, 334)(231, 330)(232, 313)(233, 249)(234, 259)(235, 245)(236, 415)(237, 350)(238, 430)(239, 347)(240, 261)(241, 405)(242, 428)(243, 374)(244, 372)(246, 382)(247, 413)(248, 300)(250, 312)(251, 322)(252, 321)(253, 295)(254, 406)(255, 310)(256, 316)(257, 427)(258, 308)(260, 280)(262, 348)(263, 323)(264, 380)(265, 388)(267, 274)(268, 303)(269, 331)(270, 394)(271, 341)(272, 327)(273, 284)(275, 307)(276, 432)(277, 384)(278, 400)(279, 407)(281, 297)(282, 306)(283, 339)(285, 398)(286, 294)(287, 393)(288, 349)(289, 375)(290, 326)(291, 340)(292, 355)(293, 335)(296, 397)(298, 342)(299, 421)(301, 367)(302, 328)(304, 325)(305, 401)(309, 429)(311, 418)(314, 396)(317, 412)(318, 370)(319, 364)(320, 409)(324, 420)(329, 351)(336, 356)(345, 358)(352, 414)(353, 376)(354, 423)(357, 425)(359, 373)(361, 404)(362, 366)(363, 399)(365, 410)(368, 383)(369, 386)(371, 403)(377, 426)(378, 390)(379, 391)(385, 395)(389, 419)(392, 402)(408, 417)(411, 431)(416, 424)
d: (1, 2, 63, 90)(3, 61, 31, 88)(4, 23, 6, 58)(5, 120, 47, 127)(7, 130, 76, 163)(8, 57)(9, 39, 15, 85)(10, 89, 16, 156)(11, 46, 42, 68)(12, 48)(13, 74, 103, 100)(14, 22)(17, 94, 26, 30)(18, 95)(19, 83, 141, 150)(20, 187)(21, 65)(25, 62, 41, 121)(27, 32)(28, 147, 44, 203)(33, 75, 49, 131)(34, 119)(35, 55, 116, 111)(36, 124)(37, 38)(40, 59)(43, 69)(45, 67)(50, 60)(51, 153, 101, 144)(52, 154)(53, 202)(54, 143)(56, 118, 84, 155)(66, 108, 92, 177)(70, 102, 96, 165)(71, 126)(72, 184, 98, 213)(73, 162)(77, 142)(78, 123)(79, 115, 164, 176)(80, 117)(81, 159)(82, 175)(87, 97)(91, 122)(104, 140)(105, 171)(106, 167)(107, 191)(109, 125, 148, 188)(110, 189)(112, 138, 151, 194)(113, 209)(114, 183)(128, 179, 161, 211)(132, 174)(133, 145)(134, 195, 186, 172)(135, 136)(137, 199)(139, 168, 196, 192)(146, 158)(149, 198)(152, 205)(160, 204, 206, 178)(166, 173)(169, 193)(170, 182)(180, 190, 201, 197)(181, 185)(200, 207, 210, 208)(212, 214, 216, 215)(217, 313)(218, 359)(219, 372)(220, 377)(221, 367)(222, 354)(223, 242)(224, 261)(225, 327, 290, 402)(226, 316, 351, 330)(227, 353, 412, 397)(228, 302)(229, 236)(230, 401)(231, 422, 256, 329)(232, 360)(233, 356)(234, 318, 271, 270)(235, 308)(237, 345)(238, 340, 417, 322)(239, 248, 389, 264)(240, 387)(241, 246)(243, 309)(244, 346)(245, 258)(247, 369)(249, 336)(250, 331)(251, 430, 291, 408)(252, 310, 379, 396)(253, 403)(254, 388)(255, 391, 314, 321)(257, 279)(259, 370, 341, 394)(260, 277)(262, 366)(263, 275)(265, 406)(266, 415)(267, 364)(268, 297)(269, 312)(272, 326, 392, 381)(273, 352)(274, 319)(276, 311)(278, 398, 420, 395)(280, 384)(281, 303)(282, 368, 283, 361)(284, 414)(285, 324, 385, 400)(286, 288)(287, 410)(289, 325)(292, 363)(293, 416)(294, 349)(295, 371)(296, 332, 376, 317)(298, 411)(299, 357)(300, 419, 380, 347)(301, 333)(304, 375)(305, 334)(306, 383, 339, 404)(307, 323)(315, 426)(320, 378)(328, 343)(335, 424)(337, 423)(338, 373)(342, 431)(344, 428)(348, 362)(350, 358)(355, 399)(365, 393)(374, 429)(382, 405)(386, 413)(390, 409)(407, 427)(418, 432)(421, 425)
e: (20, 36)(22, 38)(23, 39)(29, 67)(32, 69)(33, 70)(45, 93)(48, 95)(49, 96)(52, 80)(53, 81)(57, 65)(58, 85)(61, 120)(64, 122)(77, 104)(78, 133)(88, 127)(91, 157)(105, 167)(107, 146)(113, 152)(114, 181)(115, 153)(117, 158)(124, 159)(132, 166)(136, 193)(137, 170)(144, 176)(154, 191)(179, 184)(180, 200)(187, 202)(201, 210)(211, 213)(220, 362)(222, 431)(223, 275)(224, 405)(233, 280)(244, 359)(258, 265)(266, 399)(274, 352)(294, 425)(302, 350)(303, 365)(304, 378)(305, 418)(313, 424)(331, 403)(367, 427)(374, 413)
f: (2, 90)(3, 88)(4, 58)(5, 127)(6, 23)(7, 163)(8, 57)(9, 85)(10, 156)(11, 94)(12, 48)(13, 100)(14, 22)(15, 39)(16, 89)(17, 46)(18, 95)(19, 150)(20, 187)(21, 65)(25, 121)(26, 68)(27, 32)(28, 203)(30, 42)(31, 61)(33, 75)(34, 119)(35, 111)(36, 124)(37, 38)(40, 59)(41, 62)(43, 69)(44, 147)(45, 67)(47, 120)(49, 131)(50, 60)(51, 144)(52, 154)(53, 202)(54, 143)(55, 116)(56, 118)(66, 177)(70, 102)(71, 126)(72, 213)(73, 162)(74, 103)(76, 130)(77, 142)(78, 123)(79, 176)(80, 117)(81, 159)(82, 175)(83, 141)(84, 155)(87, 97)(91, 122)(92, 108)(96, 165)(98, 184)(101, 153)(104, 140)(105, 171)(106, 167)(107, 191)(109, 125)(110, 189)(112, 138)(113, 209)(114, 183)(115, 164)(128, 211)(132, 174)(133, 145)(134, 196)(135, 136)(137, 199)(139, 186)(146, 158)(148, 188)(149, 198)(151, 194)(152, 205)(160, 178)(161, 179)(166, 173)(168, 195)(169, 193)(170, 182)(172, 192)(180, 190)(181, 185)(197, 201)(200, 207)(204, 206)(208, 210)(214, 215)(217, 313)(218, 359)(219, 372)(220, 377)(221, 367)(222, 354)(223, 242)(224, 261)(225, 327)(226, 316)(227, 397)(228, 302)(229, 236)(230, 401)(231, 329)(232, 360)(233, 356)(234, 270)(235, 308)(237, 345)(238, 340)(239, 264)(240, 387)(241, 246)(243, 309)(244, 346)(245, 258)(247, 369)(248, 389)(249, 336)(250, 331)(251, 408)(252, 310)(253, 403)(254, 388)(255, 321)(256, 422)(257, 279)(259, 394)(260, 277)(262, 366)(263, 275)(265, 406)(266, 415)(267, 364)(268, 297)(269, 312)(271, 318)(272, 381)(273, 352)(274, 319)(276, 311)(278, 395)(280, 384)(281, 303)(282, 368)(283, 361)(284, 414)(285, 324)(286, 288)(287, 410)(289, 325)(290, 402)(291, 430)(292, 363)(293, 416)(294, 349)(295, 371)(296, 332)(298, 411)(299, 357)(300, 419)(301, 333)(304, 375)(305, 334)(306, 383)(307, 323)(314, 391)(315, 426)(317, 376)(320, 378)(322, 417)(326, 392)(328, 343)(330, 351)(335, 424)(337, 423)(338, 373)(339, 404)(341, 370)(342, 431)(344, 428)(347, 380)(348, 362)(350, 358)(353, 412)(355, 399)(365, 393)(374, 429)(379, 396)(382, 405)(385, 400)(386, 413)(390, 409)(398, 420)(407, 427)(418, 432)(421, 425)
g: (7, 13)(10, 25)(16, 41)(19, 35)(22, 57)(24, 40)(28, 66)(32, 48)(34, 71)(38, 65)(44, 92)(50, 97)(54, 110)(59, 86)(60, 119)(69, 95)(73, 99)(76, 103)(77, 132)(78, 105)(82, 149)(87, 126)(104, 166)(113, 137)(114, 136)(116, 141)(118, 138)(125, 160)(129, 162)(133, 167)(143, 175)(152, 170)(155, 194)(181, 193)(188, 206)(189, 198)(219, 338)(230, 276)(235, 254)(236, 292)(240, 246)(262, 426)(277, 336)(279, 333)(284, 364)(287, 297)(288, 299)(289, 409)(293, 360)(295, 312)(298, 423)(309, 369)(323, 428)(343, 345)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 432, 175 ]
432
-1 368 282 306 383
-2 368 283 339 383
-3 221 256 228 361
-4 242 227 250 272
-5 407 256 358 361
-6 242 412 392 250
-7 279 345 316 404
-8 253 260 371 384
-9 253 227 272 263
-10 332 323 327 295
-11 397 255 379 317
-12 410 346 393 372
-13 343 333 316 404
-14 253 269 249 384
-15 253 412 392 263
-16 323 402 295 317
-17 397 332 379 314
-18 410 281 218 372
-19 231 396 246 423
-20 320 222 294 263
-21 356 260 250 371
-22 312 280 336 403
-23 331 353 223 326
-24 297 363 268 292
-25 332 312 327 428
-26 353 255 317 252
-27 268 346 393 373
-28 254 276 419 392
-29 374 429 358 350
-30 310 412 391 296
-31 231 221 368 228
-32 297 244 365 338
-33 238 359 285 362
-34 388 336 414 426
-35 231 396 298 240
-36 320 431 425 263
-37 356 269 249 250
-38 331 233 312 336
-39 275 353 326 403
-40 363 287 268 236
-41 312 402 317 428
-42 353 332 314 252
-43 268 281 218 373
-44 254 276 347 272
-45 374 386 228 350
-46 396 391 227 296
-47 231 407 368 358
-48 287 244 365 219
-49 385 359 362 417
-50 308 267 336 426
-51 330 354 314 382
-52 352 265 377 356
-53 242 375 222 294
-54 286 289 337 428
-55 387 411 422 252
-56 430 398 366 373
-57 277 280 403 295
-58 331 397 223 381
-59 297 410 292 229
-60 364 235 249 315
-61 367 302 282 329
-62 376 344 290 269
-63 283 404 339 361
-64 355 399 281 303
-65 331 233 277 295
-66 419 235 392 230
-67 429 302 358 413
-68 310 321 376 412
-69 297 303 359 338
-70 220 244 238 285
-71 277 388 414 262
-72 432 389 402 406
-73 243 343 237 369
-74 301 306 328 351
-75 324 348 218 340
-76 330 279 345 383
-77 364 313 360 274
-78 289 279 367 378
-79 330 342 314 261
-80 377 356 258 274
-81 242 375 431 425
-82 289 411 357 428
-83 422 337 241 252
-84 408 366 373 395
-85 275 397 381 403
-86 287 410 236 229
-87 364 366 235 260
-88 367 422 302 283
-89 376 290 371 307
-90 282 404 306 361
-91 399 303 393 415
-92 235 347 272 230
-93 386 302 413 228
-94 396 321 376 227
-95 287 303 359 219
-96 220 385 244 417
-97 308 277 267 262
-98 432 239 327 406
-99 243 309 345 237
-100 301 226 328 339
-101 255 354 316 382
-102 377 324 346 340
-103 330 343 333 383
-104 352 364 424 360
-105 409 333 367 378
-106 407 375 301 390
-107 352 265 348 384
-108 308 401 380 381
-109 385 270 229 416
-110 286 409 323 337
-111 387 411 379 329
-112 430 398 315 372
-113 418 288 425 230
-114 246 369 413 405
-115 321 431 224 226
-116 298 310 256 240
-117 220 319 233 245
-118 420 291 338 262
-119 254 249 315 284
-120 282 350 427 329
-121 344 225 269 296
-122 266 365 355 281
-123 221 320 257 325
-124 275 342 421 378
-125 234 400 236 293
-126 254 366 260 284
-127 422 283 350 427
-128 245 334 389 402
-129 343 247 369 328
-130 257 237 306 351
-131 322 400 348 218
-132 313 293 284 274
-133 289 279 304 427
-134 264 430 347 340
-135 243 386 387 382
-136 309 413 240 405
-137 418 276 299 425
-138 420 291 426 219
-139 300 389 251 417
-140 232 267 335 273
-141 310 256 246 423
-142 319 232 267 217
-143 288 344 423 325
-144 222 391 405 351
-145 407 375 257 325
-146 258 348 274 384
-147 311 388 380 381
-148 229 416 285 318
-149 409 323 411 357
-150 379 337 241 329
-151 408 315 372 395
-152 288 294 305 230
-153 222 321 226 405
-154 220 233 273 406
-155 278 338 251 262
-156 225 371 296 307
-157 266 365 393 415
-158 319 245 280 362
-159 342 223 421 304
-160 234 400 292 360
-161 245 334 239 327
-162 309 345 247 328
-163 257 226 237 339
-164 342 255 261 316
-165 322 377 400 346
-166 352 424 293 284
-167 409 333 304 427
-168 264 419 430 322
-169 429 243 387 261
-170 276 299 294 305
-171 221 320 301 390
-172 389 380 238 251
-173 335 414 273 416
-174 319 414 217 416
-175 298 299 344 325
-176 431 224 391 351
-177 308 300 401 326
-178 363 385 232 270
-179 264 225 258 305
-180 266 424 394 395
-181 374 224 246 369
-182 311 334 357 349
-183 386 247 382 241
-184 264 418 265 225
-185 429 247 261 241
-186 408 419 322 248
-187 275 354 378 349
-188 236 324 271 293
-189 288 390 423 307
-190 278 335 259 415
-191 280 273 362 406
-192 408 248 347 340
-193 374 309 224 240
-194 278 426 251 219
-195 300 291 239 417
-196 291 380 238 239
-197 341 420 335 415
-198 298 299 390 307
-199 311 421 432 357
-200 399 313 394 395
-201 266 398 424 370
-202 354 223 304 349
-203 300 311 388 326
-204 363 232 285 318
-205 286 334 401 349
-206 324 292 271 360
-207 278 355 259 217
-208 341 420 355 217
-209 286 421 432 401
-210 398 399 313 370
-211 290 258 248 305
-212 341 271 370 318
-213 418 265 290 248
-214 341 270 271 394
-215 234 259 370 318
-216 234 259 270 394
-217 174 207 142 208
-218 18 75 43 131
-219 48 138 95 194
-220 154 70 117 96
-221 123 3 171 31
-222 144 20 53 153
-223 23 58 202 159
-224 176 115 181 193
-225 121 156 179 184
-226 100 115 163 153
-227 46 4 94 9
-228 45 3 93 31
-229 59 148 86 109
-230 66 113 92 152
-231 35 47 19 31
-232 178 204 140 142
-233 154 38 117 65
-234 125 160 215 216
-235 66 92 60 87
-236 188 125 40 86
-237 99 73 130 163
-238 33 70 172 196
-239 161 195 196 98
-240 35 136 116 193
-241 83 150 183 185
-242 4 81 6 53
-243 99 135 169 73
-244 48 70 96 32
-245 158 117 128 161
-246 114 181 19 141
-247 183 129 162 185
-248 211 213 192 186
-249 14 37 60 119
-250 4 37 6 21
-251 155 139 172 194
-252 55 26 83 42
-253 14 15 8 9
-254 44 126 28 119
-255 11 101 26 164
-256 3 5 116 141
-257 123 145 130 163
-258 211 80 146 179
-259 190 215 216 207
-260 126 8 21 87
-261 79 169 185 164
-262 155 71 118 97
-263 36 15 9 20
-264 134 168 179 184
-265 213 52 107 184
-266 122 157 201 180
-267 50 140 97 142
-268 24 27 40 43
-269 121 14 37 62
-270 178 214 216 109
-271 188 212 214 206
-272 44 4 92 9
-273 154 191 140 173
-274 77 132 80 146
-275 187 124 39 85
-276 44 137 170 28
-277 57 71 97 65
-278 155 190 194 207
-279 78 133 7 76
-280 22 57 158 191
-281 122 18 64 43
-282 1 90 61 120
-283 88 2 127 63
-284 132 166 126 119
-285 33 70 148 204
-286 110 209 205 54
-287 48 40 95 86
-288 143 189 113 152
-289 78 133 82 54
-290 89 211 213 62
-291 138 118 195 196
-292 24 59 160 206
-293 132 166 188 125
-294 170 20 53 152
-295 57 16 10 65
-296 121 46 156 30
-297 24 69 59 32
-298 198 35 116 175
-299 198 137 170 175
-300 177 203 139 195
-301 100 171 106 74
-302 88 67 93 61
-303 69 91 95 64
-304 133 167 202 159
-305 211 179 170 152
-306 1 90 74 130
-307 198 89 156 189
-308 177 50 97 108
-309 99 136 193 162
-310 68 116 30 141
-311 199 147 203 182
-312 22 25 38 41
-313 77 132 210 200
-314 79 17 51 42
-315 112 60 151 119
-316 13 101 7 164
-317 11 26 16 41
-318 212 148 204 215
-319 158 117 174 142
-320 123 36 171 20
-321 68 115 94 153
-322 165 168 131 186
-323 110 16 149 10
-324 188 102 206 75
-325 143 123 145 175
-326 23 177 203 39
-327 25 161 10 98
-328 100 74 129 162
-329 111 61 150 120
-330 79 103 51 76
-331 23 58 38 65
-332 25 17 42 10
-333 13 167 103 105
-334 182 128 161 205
-335 190 140 173 197
-336 22 34 38 50
-337 110 83 150 54
-338 155 69 118 32
-339 100 2 63 163
-340 134 102 192 75
-341 212 214 197 208
-342 79 124 159 164
-343 13 103 73 129
-344 121 143 62 175
-345 99 7 162 76
-346 165 12 102 27
-347 44 134 92 192
-348 146 107 75 131
-349 187 202 182 205
-350 45 127 29 120
-351 176 144 74 130
-352 166 104 52 107
-353 23 26 39 42
-354 187 101 202 51
-355 122 64 207 208
-356 80 37 52 21
-357 199 82 149 182
-358 67 47 5 29
-359 33 69 49 95
-360 77 104 160 206
-361 90 3 5 63
-362 33 158 191 49
-363 24 178 204 40
-364 77 60 104 87
-365 122 157 48 32
-366 56 126 84 87
-367 88 78 61 105
-368 1 2 47 31
-369 114 181 73 129
-370 210 201 212 215
-371 89 156 8 21
-372 12 112 18 151
-373 56 27 84 43
-374 45 181 193 29
-375 145 81 106 53
-376 89 68 94 62
-377 165 80 102 52
-378 187 78 124 105
-379 11 111 17 150
-380 147 172 108 196
-381 58 147 85 108
-382 101 135 51 183
-383 1 2 103 76
-384 14 146 8 107
-385 178 49 96 109
-386 45 135 93 183
-387 55 111 135 169
-388 34 147 71 203
-389 72 128 139 172
-390 198 189 171 106
-391 176 144 46 30
-392 66 15 6 28
-393 12 91 157 27
-394 200 180 214 216
-395 200 180 84 151
-396 35 46 94 19
-397 11 58 17 85
-398 56 210 112 201
-399 210 200 91 64
-400 165 125 160 131
-401 209 177 205 108
-402 16 72 128 41
-403 22 57 39 85
-404 13 90 7 63
-405 144 114 136 153
-406 154 191 72 98
-407 145 47 5 106
-408 192 84 151 186
-409 110 167 105 149
-410 12 59 18 86
-411 55 111 82 149
-412 68 15 6 30
-413 67 114 136 93
-414 34 71 173 174
-415 91 157 190 197
-416 148 173 174 109
-417 49 139 96 195
-418 113 213 137 184
-419 66 168 28 186
-420 138 118 197 208
-421 209 199 124 159
-422 55 88 83 127
-423 143 189 19 141
-424 166 201 180 104
-425 36 113 81 137
-426 34 50 138 194
-427 133 167 127 120
-428 25 82 41 54
-429 67 169 29 185
-430 56 112 134 168
-431 176 36 81 115
-432 209 199 72 98
0

**************