C4graphGraph forms for C4 [ 432, 178 ] = XI(Rmap(216,8){4,12|6}_12)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 432, 178 ] = XI(Rmap(216,8){4,12|6}_12).

(I) Following is a form readable by MAGMA:

g:=Graph<432|{ {202, 236}, {204, 229}, {205, 230}, {203, 253}, {198, 252}, {192, 255}, {170, 234}, {174, 230}, {175, 229}, {138, 219}, {186, 232}, {187, 233}, {138, 217}, {174, 253}, {185, 234}, {177, 231}, {140, 237}, {187, 223}, {186, 221}, {151, 254}, {181, 223}, {182, 221}, {146, 255}, {155, 236}, {145, 235}, {140, 247}, {144, 237}, {117, 240}, {123, 254}, {101, 226}, {126, 246}, {105, 227}, {103, 235}, {106, 228}, {110, 224}, {120, 232}, {122, 233}, {121, 238}, {99, 251}, {119, 239}, {64, 217}, {96, 252}, {100, 249}, {64, 224}, {76, 238}, {76, 239}, {121, 218}, {114, 218}, {114, 222}, {119, 219}, {84, 250}, {86, 248}, {78, 255}, {77, 254}, {65, 248}, {67, 250}, {66, 249}, {68, 251}, {75, 244}, {54, 244}, {55, 245}, {48, 247}, {50, 245}, {32, 232}, {33, 233}, {34, 234}, {35, 235}, {36, 236}, {37, 237}, {38, 238}, {39, 239}, {50, 250}, {51, 251}, {62, 246}, {63, 247}, {49, 248}, {41, 231}, {12, 222}, {13, 223}, {9, 220}, {11, 221}, {1, 217}, {40, 240}, {41, 241}, {42, 242}, {45, 244}, {47, 246}, {1, 219}, {6, 220}, {1, 218}, {2, 217}, {43, 240}, {46, 245}, {3, 223}, {46, 243}, {4, 218}, {5, 219}, {1, 222}, {2, 221}, {3, 220}, {44, 243}, {45, 242}, {21, 245}, {22, 246}, {23, 247}, {4, 229}, {6, 231}, {2, 224}, {3, 225}, {26, 248}, {27, 249}, {30, 252}, {31, 253}, {5, 230}, {8, 235}, {26, 249}, {7, 226}, {9, 236}, {20, 241}, {28, 250}, {29, 251}, {10, 237}, {19, 244}, {9, 225}, {2, 232}, {3, 233}, {4, 238}, {5, 239}, {24, 242}, {25, 243}, {8, 227}, {53, 222}, {7, 234}, {10, 228}, {11, 229}, {14, 224}, {15, 225}, {12, 252}, {13, 253}, {14, 254}, {15, 255}, {16, 225}, {16, 226}, {17, 227}, {6, 240}, {7, 241}, {18, 228}, {20, 226}, {6, 241}, {43, 220}, {30, 230}, {31, 231}, {10, 243}, {8, 242}, {24, 227}, {25, 228}, {4, 260}, {5, 261}, {58, 314}, {164, 420}, {7, 262}, {124, 381}, {114, 371}, {88, 345}, {9, 264}, {35, 290}, {41, 296}, {83, 337}, {97, 355}, {147, 401}, {10, 265}, {129, 386}, {26, 281}, {54, 309}, {161, 418}, {26, 286}, {93, 345}, {27, 287}, {158, 410}, {173, 425}, {165, 416}, {82, 340}, {145, 407}, {34, 293}, {129, 390}, {40, 303}, {147, 404}, {98, 362}, {125, 373}, {156, 404}, {157, 405}, {17, 280}, {18, 283}, {19, 282}, {25, 272}, {159, 406}, {166, 431}, {22, 284}, {130, 392}, {101, 367}, {23, 285}, {27, 273}, {160, 426}, {17, 282}, {18, 281}, {152, 403}, {70, 330}, {131, 399}, {156, 400}, {157, 401}, {32, 301}, {118, 379}, {111, 354}, {33, 300}, {73, 324}, {164, 425}, {21, 283}, {28, 274}, {29, 275}, {149, 411}, {8, 263}, {128, 399}, {97, 366}, {15, 256}, {49, 318}, {50, 317}, {62, 305}, {68, 331}, {172, 419}, {16, 256}, {17, 257}, {72, 344}, {73, 345}, {74, 346}, {137, 409}, {18, 259}, {106, 379}, {32, 305}, {37, 308}, {39, 310}, {45, 316}, {139, 410}, {150, 391}, {16, 258}, {42, 312}, {43, 313}, {133, 407}, {177, 419}, {33, 306}, {127, 364}, {118, 357}, {107, 376}, {38, 309}, {46, 317}, {62, 301}, {158, 397}, {182, 421}, {60, 296}, {61, 297}, {64, 340}, {65, 341}, {66, 342}, {67, 343}, {141, 409}, {176, 420}, {46, 315}, {131, 406}, {120, 365}, {79, 346}, {184, 429}, {44, 314}, {116, 354}, {102, 368}, {52, 290}, {24, 271}, {103, 368}, {36, 307}, {44, 315}, {52, 291}, {74, 349}, {76, 347}, {178, 421}, {179, 427}, {180, 428}, {12, 277}, {126, 359}, {101, 380}, {14, 279}, {19, 266}, {21, 268}, {23, 270}, {81, 328}, {80, 330}, {132, 414}, {126, 356}, {136, 402}, {154, 384}, {13, 278}, {94, 325}, {22, 269}, {180, 431}, {56, 292}, {88, 324}, {57, 293}, {58, 294}, {59, 295}, {81, 333}, {142, 402}, {143, 403}, {51, 302}, {134, 408}, {190, 416}, {11, 276}, {20, 267}, {40, 311}, {183, 424}, {187, 420}, {45, 269}, {118, 342}, {96, 320}, {53, 277}, {74, 362}, {75, 363}, {133, 421}, {136, 424}, {184, 408}, {191, 415}, {70, 359}, {72, 361}, {183, 406}, {44, 270}, {95, 381}, {62, 284}, {63, 285}, {69, 358}, {189, 414}, {89, 381}, {171, 399}, {47, 266}, {122, 351}, {87, 370}, {163, 390}, {56, 286}, {120, 350}, {112, 342}, {90, 380}, {142, 424}, {160, 390}, {166, 384}, {167, 385}, {42, 269}, {172, 395}, {173, 394}, {82, 378}, {165, 397}, {191, 407}, {65, 360}, {119, 350}, {48, 282}, {117, 351}, {89, 371}, {85, 383}, {139, 417}, {167, 397}, {179, 409}, {51, 280}, {83, 376}, {54, 282}, {85, 377}, {82, 382}, {55, 283}, {59, 279}, {106, 327}, {134, 427}, {163, 398}, {57, 278}, {131, 428}, {59, 276}, {71, 360}, {76, 355}, {168, 391}, {144, 416}, {151, 423}, {188, 396}, {48, 257}, {84, 358}, {146, 417}, {172, 415}, {11, 319}, {56, 268}, {158, 426}, {190, 394}, {52, 257}, {148, 418}, {149, 419}, {22, 289}, {123, 332}, {159, 424}, {49, 265}, {115, 331}, {104, 336}, {78, 374}, {176, 392}, {57, 256}, {127, 326}, {123, 322}, {173, 404}, {77, 375}, {107, 337}, {160, 410}, {177, 395}, {78, 373}, {125, 326}, {28, 288}, {113, 333}, {112, 332}, {29, 289}, {159, 419}, {169, 405}, {79, 370}, {109, 336}, {97, 348}, {86, 363}, {29, 291}, {108, 338}, {152, 422}, {35, 284}, {127, 318}, {209, 400}, {30, 348}, {31, 349}, {34, 352}, {213, 407}, {193, 386}, {210, 401}, {213, 406}, {39, 355}, {36, 353}, {216, 413}, {96, 293}, {42, 364}, {118, 304}, {116, 306}, {102, 288}, {37, 354}, {127, 312}, {103, 288}, {195, 395}, {204, 388}, {211, 411}, {40, 353}, {192, 393}, {90, 272}, {95, 277}, {94, 276}, {91, 273}, {47, 356}, {111, 292}, {12, 320}, {104, 292}, {13, 321}, {14, 322}, {15, 323}, {212, 408}, {79, 258}, {108, 289}, {206, 387}, {73, 263}, {109, 291}, {93, 275}, {92, 274}, {194, 396}, {203, 389}, {23, 327}, {116, 292}, {107, 315}, {24, 328}, {25, 329}, {202, 410}, {204, 412}, {211, 387}, {20, 325}, {27, 330}, {58, 363}, {193, 400}, {21, 326}, {215, 388}, {214, 389}, {84, 263}, {57, 362}, {80, 259}, {50, 358}, {111, 315}, {48, 357}, {126, 299}, {94, 267}, {83, 262}, {81, 260}, {88, 270}, {113, 295}, {112, 294}, {89, 271}, {203, 413}, {19, 324}, {28, 331}, {51, 356}, {70, 273}, {82, 261}, {197, 402}, {59, 355}, {116, 300}, {115, 298}, {123, 290}, {117, 303}, {114, 297}, {199, 412}, {87, 267}, {196, 408}, {66, 287}, {85, 264}, {211, 398}, {81, 271}, {65, 286}, {124, 291}, {86, 265}, {198, 409}, {87, 311}, {196, 420}, {93, 316}, {108, 269}, {88, 314}, {98, 256}, {200, 426}, {47, 332}, {67, 288}, {66, 294}, {80, 308}, {206, 426}, {68, 289}, {102, 259}, {91, 318}, {72, 301}, {74, 303}, {86, 304}, {214, 432}, {91, 317}, {199, 417}, {73, 302}, {101, 258}, {201, 430}, {38, 334}, {92, 308}, {206, 422}, {196, 429}, {30, 372}, {58, 336}, {71, 300}, {202, 417}, {63, 339}, {193, 429}, {194, 430}, {195, 431}, {60, 337}, {70, 299}, {196, 425}, {198, 427}, {207, 418}, {68, 298}, {69, 299}, {200, 422}, {201, 423}, {61, 338}, {69, 298}, {195, 428}, {205, 418}, {109, 285}, {111, 287}, {213, 421}, {105, 280}, {215, 422}, {125, 268}, {209, 416}, {194, 432}, {60, 335}, {106, 281}, {61, 334}, {107, 287}, {104, 285}, {113, 260}, {210, 423}, {96, 278}, {104, 286}, {97, 279}, {49, 326}, {75, 316}, {52, 332}, {214, 430}, {53, 333}, {54, 334}, {55, 335}, {94, 295}, {213, 428}, {110, 279}, {84, 302}, {112, 266}, {75, 304}, {110, 277}, {105, 274}, {103, 284}, {99, 280}, {77, 310}, {77, 305}, {122, 262}, {78, 306}, {79, 307}, {209, 429}, {210, 430}, {38, 347}, {124, 257}, {102, 283}, {100, 281}, {69, 312}, {205, 432}, {32, 350}, {109, 275}, {33, 351}, {71, 313}, {31, 352}, {216, 423}, {115, 268}, {207, 432}, {208, 431}, {212, 427}, {179, 304}, {192, 323}, {200, 331}, {209, 341}, {215, 338}, {208, 343}, {214, 337}, {186, 307}, {153, 275}, {188, 310}, {203, 321}, {154, 273}, {201, 327}, {205, 348}, {197, 343}, {155, 264}, {145, 263}, {175, 311}, {191, 295}, {144, 265}, {167, 318}, {207, 342}, {194, 344}, {190, 293}, {178, 302}, {149, 264}, {167, 313}, {211, 333}, {180, 299}, {136, 296}, {137, 297}, {143, 303}, {135, 294}, {139, 298}, {141, 300}, {151, 310}, {152, 313}, {162, 259}, {164, 261}, {182, 276}, {212, 374}, {142, 301}, {181, 278}, {35, 391}, {37, 385}, {155, 319}, {153, 316}, {43, 397}, {216, 382}, {154, 317}, {208, 375}, {34, 394}, {215, 383}, {41, 384}, {185, 272}, {39, 396}, {169, 258}, {174, 261}, {175, 260}, {202, 353}, {170, 262}, {36, 395}, {63, 400}, {153, 297}, {56, 393}, {154, 296}, {198, 372}, {139, 312}, {129, 309}, {150, 290}, {207, 379}, {188, 266}, {197, 370}, {55, 399}, {60, 389}, {61, 388}, {53, 398}, {210, 366}, {130, 319}, {135, 314}, {199, 377}, {92, 414}, {189, 383}, {72, 396}, {170, 366}, {176, 372}, {189, 377}, {89, 412}, {83, 405}, {90, 413}, {133, 322}, {136, 335}, {137, 334}, {183, 368}, {201, 270}, {186, 370}, {216, 272}, {190, 374}, {191, 375}, {199, 271}, {128, 329}, {129, 328}, {157, 340}, {162, 367}, {85, 411}, {163, 365}, {174, 352}, {175, 353}, {197, 267}, {156, 339}, {187, 372}, {121, 425}, {149, 325}, {183, 359}, {64, 401}, {67, 402}, {150, 327}, {189, 364}, {138, 344}, {180, 358}, {147, 320}, {184, 363}, {71, 403}, {87, 387}, {148, 322}, {178, 356}, {179, 357}, {95, 392}, {80, 393}, {130, 347}, {161, 376}, {168, 369}, {185, 352}, {90, 384}, {93, 391}, {91, 385}, {137, 339}, {159, 325}, {166, 380}, {200, 274}, {161, 378}, {178, 361}, {156, 320}, {157, 321}, {92, 385}, {95, 386}, {158, 323}, {181, 360}, {141, 339}, {162, 380}, {182, 361}, {181, 341}, {98, 387}, {100, 389}, {208, 305}, {132, 359}, {171, 335}, {141, 360}, {143, 362}, {148, 369}, {110, 392}, {144, 374}, {145, 375}, {165, 323}, {212, 306}, {99, 388}, {142, 361}, {146, 373}, {152, 383}, {119, 415}, {132, 364}, {160, 328}, {161, 329}, {162, 330}, {169, 321}, {184, 336}, {140, 357}, {151, 382}, {108, 390}, {153, 371}, {146, 377}, {176, 347}, {131, 367}, {177, 349}, {121, 404}, {150, 379}, {113, 415}, {125, 403}, {140, 354}, {148, 378}, {122, 405}, {130, 365}, {128, 367}, {164, 340}, {165, 341}, {168, 344}, {185, 329}, {195, 307}, {163, 338}, {166, 343}, {168, 345}, {171, 346}, {172, 350}, {173, 351}, {169, 346}, {204, 319}, {132, 368}, {133, 369}, {192, 308}, {193, 309}, {134, 371}, {120, 398}, {155, 365}, {170, 348}, {171, 349}, {105, 414}, {128, 376}, {188, 324}, {98, 411}, {100, 413}, {135, 382}, {206, 311}, {115, 393}, {143, 373}, {134, 381}, {138, 369}, {135, 378}, {147, 366}, {124, 386}, {99, 412}, {117, 394} }>;

(II) A more general form is to represent the graph as the orbit of {202, 236} under the group generated by the following permutations:

a: (2, 4)(3, 7)(5, 12)(6, 16)(8, 22)(9, 20)(10, 26)(13, 34)(14, 38)(15, 41)(17, 47)(18, 49)(19, 52)(23, 58)(24, 62)(25, 65)(27, 37)(28, 69)(29, 73)(31, 57)(32, 81)(33, 83)(35, 45)(36, 87)(39, 95)(40, 79)(42, 103)(43, 101)(44, 104)(46, 56)(48, 112)(50, 115)(53, 119)(54, 123)(55, 125)(59, 130)(60, 78)(61, 133)(63, 135)(64, 121)(66, 140)(67, 139)(68, 84)(70, 92)(71, 128)(72, 89)(75, 150)(76, 110)(77, 129)(80, 91)(82, 156)(85, 159)(86, 106)(88, 109)(90, 165)(94, 155)(96, 174)(97, 176)(98, 177)(99, 178)(100, 144)(102, 127)(105, 126)(107, 116)(108, 145)(113, 120)(114, 138)(117, 169)(124, 188)(131, 152)(134, 194)(136, 146)(137, 148)(141, 161)(142, 199)(143, 171)(147, 164)(151, 193)(153, 168)(154, 192)(157, 173)(158, 166)(160, 208)(162, 167)(163, 191)(170, 187)(172, 211)(175, 186)(179, 207)(180, 200)(181, 185)(182, 204)(183, 189)(184, 201)(190, 203)(195, 206)(196, 210)(197, 202)(198, 205)(209, 216)(212, 214)(213, 215)(217, 218)(219, 222)(220, 226)(221, 229)(223, 234)(224, 238)(225, 241)(227, 246)(228, 248)(230, 252)(231, 256)(232, 260)(233, 262)(235, 269)(236, 267)(237, 249)(239, 277)(240, 258)(242, 284)(243, 286)(244, 290)(245, 268)(247, 294)(250, 298)(251, 302)(253, 293)(254, 309)(255, 296)(257, 266)(259, 318)(261, 320)(263, 289)(264, 325)(265, 281)(270, 336)(271, 301)(272, 341)(273, 308)(274, 299)(275, 345)(276, 319)(278, 352)(279, 347)(280, 356)(282, 332)(283, 326)(285, 314)(287, 354)(288, 312)(291, 324)(292, 315)(295, 365)(297, 369)(300, 376)(303, 346)(304, 379)(305, 328)(306, 337)(307, 311)(310, 386)(313, 367)(316, 391)(317, 393)(321, 394)(322, 334)(323, 384)(327, 363)(329, 360)(330, 385)(331, 358)(333, 350)(335, 373)(338, 407)(339, 378)(340, 404)(342, 357)(343, 410)(344, 371)(348, 372)(349, 362)(351, 405)(353, 370)(355, 392)(359, 414)(361, 412)(364, 368)(366, 420)(374, 389)(375, 390)(377, 424)(380, 397)(381, 396)(382, 400)(383, 406)(387, 395)(388, 421)(398, 415)(399, 403)(401, 425)(402, 417)(408, 430)(409, 418)(411, 419)(413, 416)(422, 428)(423, 429)(426, 431)(427, 432)
b: (2, 5)(3, 9)(4, 12)(6, 16)(7, 20)(8, 23)(10, 28)(11, 30)(13, 36)(14, 39)(15, 43)(17, 48)(18, 50)(19, 52)(22, 58)(24, 63)(25, 67)(26, 69)(27, 70)(29, 75)(31, 79)(32, 82)(33, 85)(34, 87)(35, 88)(37, 92)(38, 95)(40, 57)(41, 101)(42, 104)(44, 103)(45, 109)(46, 102)(47, 112)(49, 115)(51, 118)(53, 121)(54, 124)(56, 127)(59, 97)(60, 131)(61, 134)(62, 135)(64, 119)(65, 139)(66, 126)(68, 86)(71, 146)(72, 148)(73, 150)(76, 110)(77, 151)(78, 152)(80, 91)(81, 156)(83, 159)(84, 106)(89, 137)(90, 166)(94, 170)(96, 175)(98, 117)(99, 179)(100, 180)(105, 140)(107, 183)(108, 184)(111, 132)(113, 147)(116, 189)(120, 164)(122, 149)(123, 188)(128, 136)(129, 193)(130, 176)(133, 194)(141, 199)(142, 161)(144, 200)(145, 201)(154, 162)(155, 187)(157, 172)(158, 165)(160, 209)(163, 196)(167, 192)(169, 177)(173, 211)(174, 186)(178, 207)(181, 202)(182, 205)(185, 197)(190, 206)(191, 210)(195, 203)(198, 204)(208, 216)(212, 215)(213, 214)(217, 219)(218, 222)(220, 225)(221, 230)(223, 236)(224, 239)(226, 241)(227, 247)(228, 250)(229, 252)(231, 258)(232, 261)(233, 264)(234, 267)(235, 270)(237, 274)(238, 277)(240, 256)(242, 285)(243, 288)(244, 291)(245, 283)(246, 294)(248, 298)(249, 299)(251, 304)(253, 307)(254, 310)(255, 313)(257, 282)(259, 317)(260, 320)(262, 325)(263, 327)(265, 331)(266, 332)(268, 326)(269, 336)(271, 339)(272, 343)(273, 330)(275, 316)(276, 348)(278, 353)(279, 355)(280, 357)(281, 358)(284, 314)(286, 312)(287, 359)(289, 363)(290, 324)(292, 364)(293, 311)(295, 366)(296, 367)(297, 371)(300, 377)(301, 378)(302, 379)(303, 362)(305, 382)(306, 383)(308, 385)(309, 386)(315, 368)(318, 393)(319, 372)(321, 395)(322, 396)(323, 397)(328, 400)(329, 402)(333, 404)(334, 381)(335, 399)(337, 406)(338, 408)(340, 350)(341, 410)(342, 356)(344, 369)(345, 391)(346, 349)(347, 392)(351, 411)(352, 370)(354, 414)(360, 417)(361, 418)(365, 420)(373, 403)(374, 422)(375, 423)(376, 424)(380, 384)(387, 394)(388, 427)(389, 428)(390, 429)(398, 425)(401, 415)(405, 419)(407, 430)(409, 412)(413, 431)(416, 426)(421, 432)
c: (1, 2)(3, 8)(4, 11)(5, 14)(6, 17)(7, 19)(9, 24)(10, 27)(12, 32)(13, 35)(15, 42)(16, 45)(18, 26)(20, 54)(21, 56)(22, 57)(23, 60)(25, 66)(28, 71)(29, 74)(30, 77)(31, 52)(33, 84)(34, 47)(36, 89)(37, 91)(38, 94)(39, 97)(40, 99)(41, 48)(43, 105)(44, 107)(46, 111)(49, 80)(50, 116)(51, 117)(53, 120)(55, 104)(58, 128)(59, 76)(61, 87)(62, 96)(63, 136)(64, 138)(65, 102)(67, 141)(68, 143)(69, 78)(70, 144)(72, 147)(73, 122)(75, 101)(79, 153)(81, 155)(82, 148)(83, 88)(85, 160)(86, 162)(90, 118)(92, 167)(93, 169)(95, 172)(98, 108)(100, 106)(103, 181)(109, 171)(110, 119)(112, 185)(113, 130)(114, 186)(115, 125)(121, 182)(123, 174)(124, 177)(126, 190)(127, 192)(129, 149)(131, 184)(132, 165)(133, 164)(134, 195)(135, 161)(137, 197)(139, 146)(140, 154)(142, 156)(145, 187)(150, 203)(151, 205)(152, 200)(157, 168)(158, 189)(159, 193)(163, 211)(166, 179)(170, 188)(173, 178)(175, 204)(176, 191)(180, 212)(183, 209)(194, 210)(196, 213)(198, 208)(199, 202)(201, 214)(206, 215)(207, 216)(218, 221)(219, 224)(220, 227)(222, 232)(223, 235)(225, 242)(226, 244)(228, 249)(230, 254)(231, 257)(233, 263)(234, 266)(236, 271)(237, 273)(238, 276)(239, 279)(240, 280)(241, 282)(243, 287)(245, 292)(246, 293)(247, 296)(248, 259)(250, 300)(251, 303)(252, 305)(253, 290)(255, 312)(256, 269)(258, 316)(260, 319)(261, 322)(262, 324)(264, 328)(265, 330)(267, 334)(270, 337)(272, 342)(274, 313)(275, 346)(277, 350)(278, 284)(283, 286)(285, 335)(288, 360)(289, 362)(291, 349)(294, 329)(295, 347)(297, 370)(298, 373)(299, 374)(301, 320)(302, 351)(304, 380)(306, 358)(307, 371)(308, 318)(309, 325)(310, 348)(311, 388)(314, 376)(317, 354)(321, 391)(323, 364)(326, 393)(327, 389)(331, 403)(332, 352)(333, 365)(336, 399)(338, 387)(339, 402)(340, 369)(341, 368)(343, 409)(344, 401)(345, 405)(353, 412)(356, 394)(357, 384)(359, 416)(361, 404)(363, 367)(366, 396)(372, 375)(377, 410)(379, 413)(381, 395)(382, 418)(383, 426)(386, 419)(390, 411)(392, 415)(397, 414)(400, 424)(406, 429)(407, 420)(408, 428)(421, 425)(423, 432)(427, 431)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 432, 178 ]
432
-1 222 217 218 219
-2 221 232 224 217
-3 220 233 223 225
-4 238 260 218 229
-5 239 261 219 230
-6 220 231 240 241
-7 234 226 262 241
-8 242 235 227 263
-9 220 264 225 236
-10 243 265 237 228
-11 319 221 276 229
-12 320 222 277 252
-13 253 321 223 278
-14 254 322 224 279
-15 255 256 323 225
-16 256 225 258 226
-17 257 280 227 282
-18 259 281 228 283
-19 244 266 324 282
-20 267 226 325 241
-21 245 268 326 283
-22 289 246 269 284
-23 247 270 327 285
-24 242 227 271 328
-25 243 228 272 329
-26 286 248 281 249
-27 330 287 249 273
-28 331 288 250 274
-29 275 289 291 251
-30 348 372 230 252
-31 231 253 352 349
-32 232 301 305 350
-33 233 300 306 351
-34 352 234 293 394
-35 235 290 391 284
-36 353 236 307 395
-37 308 385 354 237
-38 309 334 347 238
-39 396 310 355 239
-40 353 311 303 240
-41 231 241 296 384
-42 242 364 312 269
-43 220 397 313 240
-44 243 270 314 315
-45 242 244 269 316
-46 243 245 315 317
-47 266 332 246 356
-48 257 247 357 282
-49 265 248 326 318
-50 245 358 250 317
-51 356 280 302 251
-52 332 257 290 291
-53 222 277 398 333
-54 309 244 334 282
-55 245 399 335 283
-56 286 268 292 393
-57 256 278 293 362
-58 363 314 336 294
-59 276 355 279 295
-60 389 335 337 296
-61 297 388 334 338
-62 246 301 305 284
-63 400 247 339 285
-64 224 401 217 340
-65 286 341 248 360
-66 287 342 249 294
-67 288 343 402 250
-68 298 331 289 251
-69 298 299 312 358
-70 330 299 359 273
-71 300 313 403 360
-72 396 344 301 361
-73 345 302 324 263
-74 346 303 349 362
-75 363 244 304 316
-76 355 347 238 239
-77 254 375 310 305
-78 374 255 306 373
-79 258 346 370 307
-80 308 330 259 393
-81 333 260 271 328
-82 378 261 382 340
-83 376 337 262 405
-84 302 358 250 263
-85 264 377 411 383
-86 363 265 248 304
-87 387 267 311 370
-88 345 324 270 314
-89 412 271 381 371
-90 380 413 272 384
-91 385 273 317 318
-92 308 385 414 274
-93 275 345 391 316
-94 276 267 325 295
-95 386 277 381 392
-96 320 278 293 252
-97 355 366 279 348
-98 387 256 411 362
-99 388 280 412 251
-100 389 281 413 249
-101 367 258 226 380
-102 288 368 259 283
-103 288 235 368 284
-104 286 292 336 285
-105 280 227 414 274
-106 379 281 228 327
-107 287 376 315 337
-108 289 269 390 338
-109 275 291 336 285
-110 277 224 279 392
-111 287 354 292 315
-112 342 266 332 294
-113 333 260 415 295
-114 297 222 371 218
-115 298 331 268 393
-116 354 300 292 306
-117 303 240 394 351
-118 342 357 379 304
-119 239 415 350 219
-120 232 365 398 350
-121 238 425 404 218
-122 233 262 405 351
-123 254 332 322 290
-124 386 257 291 381
-125 268 326 403 373
-126 299 246 356 359
-127 364 312 326 318
-128 376 399 367 329
-129 309 386 390 328
-130 319 365 347 392
-131 399 367 406 428
-132 364 368 359 414
-133 407 322 421 369
-134 408 381 371 427
-135 378 314 294 382
-136 335 402 424 296
-137 297 409 334 339
-138 344 369 217 219
-139 298 410 312 417
-140 354 247 357 237
-141 409 300 360 339
-142 301 402 424 361
-143 303 403 362 373
-144 374 265 237 416
-145 407 375 235 263
-146 255 377 373 417
-147 320 366 401 404
-148 418 322 378 369
-149 264 419 411 325
-150 290 379 391 327
-151 254 310 423 382
-152 422 313 403 383
-153 275 297 316 371
-154 273 317 296 384
-155 264 319 365 236
-156 320 400 404 339
-157 321 401 405 340
-158 397 410 323 426
-159 419 325 424 406
-160 410 390 426 328
-161 418 376 378 329
-162 330 367 259 380
-163 365 398 390 338
-164 420 425 261 340
-165 341 397 323 416
-166 343 431 380 384
-167 385 397 313 318
-168 344 345 369 391
-169 321 258 346 405
-170 234 366 348 262
-171 399 335 346 349
-172 419 415 350 395
-173 425 404 394 351
-174 253 352 261 230
-175 353 311 260 229
-176 420 347 392 372
-177 231 419 349 395
-178 421 356 302 361
-179 409 357 304 427
-180 299 431 358 428
-181 341 223 278 360
-182 221 276 421 361
-183 368 424 359 406
-184 363 429 408 336
-185 352 234 272 329
-186 221 232 370 307
-187 233 420 223 372
-188 396 266 310 324
-189 364 377 414 383
-190 374 293 394 416
-191 407 375 415 295
-192 308 255 323 393
-193 429 309 386 400
-194 396 430 344 432
-195 431 307 395 428
-196 429 408 420 425
-197 343 267 402 370
-198 409 372 427 252
-199 377 412 271 417
-200 331 422 426 274
-201 430 423 270 327
-202 353 410 236 417
-203 253 321 389 413
-204 319 388 412 229
-205 418 432 348 230
-206 387 311 422 426
-207 418 342 432 379
-208 375 343 431 305
-209 341 429 400 416
-210 430 366 401 423
-211 387 398 333 411
-212 374 408 306 427
-213 407 421 406 428
-214 430 432 389 337
-215 388 422 338 383
-216 423 413 272 382
-217 1 2 138 64
-218 121 1 4 114
-219 1 5 138 119
-220 3 6 9 43
-221 11 2 182 186
-222 1 12 114 53
-223 187 13 3 181
-224 110 2 14 64
-225 3 15 16 9
-226 101 16 7 20
-227 24 17 105 8
-228 25 18 106 10
-229 11 4 204 175
-230 5 205 30 174
-231 177 6 41 31
-232 2 32 120 186
-233 33 187 122 3
-234 34 170 7 185
-235 35 145 103 8
-236 155 36 202 9
-237 144 37 140 10
-238 121 4 38 76
-239 5 39 119 76
-240 6 40 117 43
-241 6 7 41 20
-242 45 24 8 42
-243 44 46 25 10
-244 45 19 75 54
-245 55 46 50 21
-246 22 47 126 62
-247 23 48 63 140
-248 26 49 86 65
-249 66 100 26 27
-250 67 28 50 84
-251 99 68 29 51
-252 198 12 30 96
-253 13 203 31 174
-254 77 123 14 151
-255 78 146 15 192
-256 57 15 16 98
-257 124 48 17 52
-258 79 101 169 16
-259 80 102 18 162
-260 113 4 81 175
-261 5 82 174 164
-262 122 170 83 7
-263 145 73 84 8
-264 155 149 85 9
-265 144 49 86 10
-266 188 112 47 19
-267 94 20 87 197
-268 56 125 115 21
-269 22 45 42 108
-270 44 88 23 201
-271 89 199 24 81
-272 90 25 216 185
-273 154 91 70 27
-274 200 92 28 105
-275 93 29 109 153
-276 11 59 94 182
-277 110 12 95 53
-278 13 57 181 96
-279 110 14 59 97
-280 99 17 105 51
-281 100 26 18 106
-282 48 17 19 54
-283 55 102 18 21
-284 22 35 103 62
-285 23 104 63 109
-286 56 26 104 65
-287 66 111 27 107
-288 67 102 103 28
-289 22 68 29 108
-290 35 123 150 52
-291 124 29 52 109
-292 56 111 104 116
-293 34 57 190 96
-294 66 112 58 135
-295 113 59 191 94
-296 154 136 60 41
-297 114 137 61 153
-298 68 69 115 139
-299 69 70 180 126
-300 33 71 116 141
-301 72 62 32 142
-302 178 51 73 84
-303 143 40 117 74
-304 179 118 75 86
-305 77 62 32 208
-306 33 78 212 116
-307 79 36 195 186
-308 80 37 92 192
-309 38 193 129 54
-310 77 188 39 151
-311 40 206 87 175
-312 69 127 139 42
-313 167 71 152 43
-314 44 88 58 135
-315 44 111 46 107
-316 45 93 75 153
-317 154 46 91 50
-318 167 91 49 127
-319 11 155 204 130
-320 12 156 147 96
-321 13 157 169 203
-322 133 123 14 148
-323 165 15 158 192
-324 88 188 73 19
-325 159 94 149 20
-326 125 49 127 21
-327 23 201 106 150
-328 24 81 160 129
-329 25 128 161 185
-330 80 70 27 162
-331 68 200 115 28
-332 112 123 47 52
-333 211 113 81 53
-334 38 137 61 54
-335 55 136 60 171
-336 58 104 184 109
-337 60 214 83 107
-338 61 215 108 163
-339 156 137 63 141
-340 157 82 64 164
-341 165 209 181 65
-342 66 112 118 207
-343 67 166 197 208
-344 168 72 138 194
-345 88 168 93 73
-346 79 169 171 74
-347 176 38 130 76
-348 170 205 30 97
-349 177 171 74 31
-350 172 119 32 120
-351 33 122 117 173
-352 34 31 174 185
-353 36 202 40 175
-354 111 37 116 140
-355 59 39 97 76
-356 178 47 126 51
-357 179 48 118 140
-358 69 180 50 84
-359 132 70 126 183
-360 71 181 141 65
-361 178 72 182 142
-362 143 57 74 98
-363 58 184 75 86
-364 132 189 127 42
-365 155 130 163 120
-366 210 147 170 97
-367 101 128 162 131
-368 132 102 103 183
-369 133 168 148 138
-370 79 87 186 197
-371 89 134 114 153
-372 176 187 198 30
-373 143 78 146 125
-374 78 144 190 212
-375 77 145 191 208
-376 83 128 161 107
-377 199 189 146 85
-378 135 82 148 161
-379 106 150 118 207
-380 166 90 101 162
-381 89 134 124 95
-382 135 82 216 151
-383 189 215 85 152
-384 154 166 90 41
-385 167 91 37 92
-386 124 193 95 129
-387 211 206 87 98
-388 99 61 204 215
-389 100 60 203 214
-390 160 129 108 163
-391 35 168 93 150
-392 110 176 95 130
-393 56 80 115 192
-394 34 190 117 173
-395 177 36 172 195
-396 188 39 72 194
-397 165 167 158 43
-398 211 53 163 120
-399 55 171 128 131
-400 209 156 193 63
-401 210 157 147 64
-402 67 136 142 197
-403 143 125 71 152
-404 121 156 147 173
-405 122 157 169 83
-406 213 159 183 131
-407 133 145 191 213
-408 134 212 184 196
-409 198 179 137 141
-410 158 202 160 139
-411 211 149 85 98
-412 99 89 199 204
-413 100 90 203 216
-414 132 189 92 105
-415 113 191 172 119
-416 165 209 144 190
-417 199 146 202 139
-418 148 161 205 207
-419 177 159 149 172
-420 176 187 196 164
-421 133 178 213 182
-422 200 215 206 152
-423 210 201 216 151
-424 136 159 183 142
-425 121 173 196 164
-426 200 158 160 206
-427 198 134 179 212
-428 180 213 195 131
-429 209 193 184 196
-430 210 201 214 194
-431 166 180 195 208
-432 214 194 205 207
0

**************