[Home] [Table] [Glossary]
[Families]
On this page are all graphs related to C4[ 432, 178 ].
Graphs which this one covers
54-fold cover of
C4[ 8, 1 ]
= K_4,4
27-fold cover of
C4[ 16, 1 ]
= W( 8, 2)
24-fold cover of
C4[ 18, 2 ]
= DW( 6, 3)
12-fold cover of
C4[ 36, 7 ]
= SDD(DW( 3, 3))
6-fold cover of
C4[ 72, 16 ]
= PL(WH_ 12( 3, 0, 1, 7), [3^12, 4^9])
6-fold cover of
C4[ 72, 17 ]
= PL(WH_ 12( 3, 1, 6, 7), [4^9, 6^6])
6-fold cover of
C4[ 72, 23 ]
= SDD(DW( 6, 3))
4-fold cover of
C4[ 108, 22 ]
= XI(Rmap(54,3){4,12|3}_6)
3-fold cover of
C4[ 144, 48 ]
= SDD({4, 4}_ 6, 0)
2-fold cover of
C4[ 216, 74 ]
= XI(Rmap(108,11){4,12|6}_6)
BGCG dissections of this graph
Base Graph:
C4[ 108, 19 ]
= UG(ATD[108,24])
connection graph: [K_2]
Base Graph:
C4[ 108, 20 ]
= UG(ATD[108,27])
connection graph: [K_2]
Base Graph:
C4[ 216, 60 ]
= UG(ATD[216,81])
connection graph: [K_1]
Base Graph:
C4[ 216, 61 ]
= UG(ATD[216,84])
connection graph: [K_1]
Aut-Orbital graphs of this one:
C4[ 8, 1 ] = K_4,4
C4[ 9, 1 ] = DW( 3, 3)
C4[ 16, 1 ] = W( 8, 2)
C4[ 18, 2 ] = DW( 6, 3)
C4[ 24, 1 ] = W( 12, 2)
C4[ 27, 3 ] = AMC( 3, 3, [ 0. 1: 2. 2])
C4[ 48, 16 ] = SDD(W( 6, 2))
C4[ 54, 5 ] = AMC( 6, 3, [ 0. 1: 2. 2])
C4[ 216, 60 ] = UG(ATD[216,81])
C4[ 216, 61 ] = UG(ATD[216,84])
C4[ 432, 174 ] = PL(ATD[54,6]#DCyc[4])
C4[ 432, 178 ] = XI(Rmap(216,8){4,12|6}_12)
C4[ 432, 183 ] = SDD(UG(ATD[108,27]))
C4[ 432, 273 ] = BGCG(UG(ATD[216,81]); K1;4)
C4[ 432, 274 ] = BGCG(UG(ATD[216,81]); K1;6)
C4[ 432, 275 ] = BGCG(UG(ATD[216,81]); K1;7)
C4[ 432, 276 ] = BGCG(UG(ATD[216,84]); K1;{6, 9})