[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 432, 191 ] =
SDD({4,4}_<12,6>).
(I) Following is a form readable by MAGMA:
g:=Graph<432|{ {192, 226}, {195, 231}, {209, 249}, {194, 236}, {209, 254}, {210,
253}, {205, 252}, {192, 244}, {211, 230}, {205, 251}, {214, 237}, {214, 235},
{191, 254}, {190, 252}, {153, 218}, {183, 243}, {173, 232}, {182, 241}, {176,
248}, {173, 228}, {176, 249}, {177, 251}, {140, 221}, {183, 229}, {169, 250},
{139, 223}, {140, 217}, {182, 227}, {139, 220}, {175, 248}, {183, 237}, {164,
255}, {168, 245}, {182, 235}, {191, 223}, {139, 234}, {128, 226}, {128, 227},
{190, 221}, {140, 233}, {130, 229}, {139, 225}, {140, 224}, {128, 240}, {174,
222}, {173, 220}, {154, 232}, {174, 218}, {130, 247}, {174, 219}, {128, 246},
{153, 238}, {174, 217}, {137, 240}, {138, 243}, {153, 230}, {88, 219}, {121,
241}, {107, 253}, {87, 242}, {70, 224}, {64, 234}, {87, 228}, {85, 225}, {107,
222}, {77, 250}, {88, 239}, {76, 244}, {70, 255}, {76, 245}, {87, 236}, {88,
231}, {56, 253}, {57, 255}, {48, 247}, {32, 236}, {34, 238}, {34, 239}, {33,
239}, {33, 238}, {12, 222}, {41, 251}, {40, 250}, {13, 223}, {35, 240}, {36,
241}, {38, 243}, {11, 221}, {37, 242}, {62, 233}, {1, 217}, {42, 242}, {1, 219},
{6, 220}, {1, 218}, {45, 246}, {2, 217}, {3, 223}, {4, 218}, {5, 219}, {1, 222},
{39, 248}, {3, 220}, {2, 221}, {2, 224}, {25, 251}, {24, 250}, {21, 247}, {20,
246}, {6, 228}, {5, 231}, {4, 230}, {3, 225}, {8, 235}, {7, 227}, {16, 244}, {7,
226}, {25, 252}, {9, 236}, {17, 247}, {19, 245}, {18, 244}, {10, 237}, {18,
245}, {3, 234}, {23, 254}, {4, 238}, {5, 239}, {2, 233}, {8, 227}, {9, 228}, {6,
232}, {23, 249}, {22, 248}, {15, 225}, {14, 224}, {10, 229}, {22, 249}, {7,
246}, {14, 255}, {12, 253}, {16, 226}, {31, 237}, {13, 254}, {17, 229}, {31,
235}, {30, 234}, {29, 233}, {28, 232}, {7, 240}, {11, 252}, {8, 241}, {10, 243},
{9, 242}, {26, 230}, {27, 231}, {4, 260}, {172, 428}, {81, 337}, {25, 281}, {24,
280}, {23, 279}, {22, 278}, {21, 277}, {20, 276}, {19, 275}, {18, 274}, {14,
270}, {5, 261}, {92, 348}, {93, 349}, {94, 350}, {96, 353}, {172, 429}, {98,
355}, {118, 375}, {10, 264}, {158, 412}, {135, 389}, {13, 271}, {12, 270}, {59,
312}, {179, 432}, {145, 402}, {84, 343}, {97, 354}, {109, 366}, {112, 371}, {6,
258}, {147, 407}, {146, 406}, {143, 395}, {142, 394}, {42, 303}, {159, 410},
{152, 413}, {142, 395}, {63, 314}, {99, 358}, {105, 364}, {106, 367}, {11, 269},
{83, 341}, {28, 282}, {18, 276}, {97, 359}, {98, 356}, {99, 357}, {41, 302},
{156, 411}, {22, 286}, {161, 425}, {160, 424}, {148, 412}, {82, 347}, {89, 336},
{103, 366}, {36, 302}, {148, 414}, {37, 303}, {90, 336}, {91, 337}, {48, 315},
{187, 432}, {147, 408}, {135, 396}, {61, 310}, {102, 365}, {124, 375}, {32,
300}, {134, 394}, {46, 290}, {33, 301}, {84, 344}, {86, 346}, {129, 397}, {84,
345}, {8, 262}, {82, 348}, {9, 263}, {100, 362}, {15, 256}, {141, 386}, {60,
307}, {34, 301}, {100, 363}, {58, 298}, {187, 427}, {152, 392}, {79, 351}, {111,
383}, {16, 257}, {180, 421}, {56, 297}, {55, 294}, {104, 377}, {17, 259}, {75,
345}, {74, 344}, {73, 347}, {72, 346}, {54, 292}, {51, 289}, {50, 288}, {96,
370}, {50, 289}, {155, 392}, {144, 387}, {74, 345}, {54, 293}, {24, 268}, {178,
422}, {62, 298}, {43, 319}, {39, 306}, {52, 290}, {187, 429}, {53, 291}, {89,
335}, {45, 314}, {29, 261}, {178, 426}, {150, 398}, {125, 357}, {30, 263}, {136,
401}, {91, 322}, {19, 265}, {180, 430}, {40, 307}, {90, 321}, {102, 381}, {111,
372}, {125, 358}, {126, 357}, {71, 347}, {187, 423}, {143, 403}, {133, 409},
{41, 308}, {145, 396}, {132, 409}, {79, 338}, {74, 343}, {14, 272}, {57, 295},
{21, 267}, {20, 266}, {15, 273}, {110, 368}, {51, 300}, {159, 384}, {80, 335},
{69, 346}, {56, 295}, {55, 296}, {103, 376}, {16, 304}, {165, 389}, {134, 422},
{17, 305}, {101, 325}, {160, 385}, {162, 390}, {189, 409}, {163, 391}, {24,
317}, {172, 393}, {161, 388}, {48, 277}, {90, 383}, {83, 373}, {131, 421}, {25,
318}, {45, 266}, {80, 376}, {185, 401}, {184, 400}, {82, 378}, {81, 377}, {83,
379}, {185, 400}, {19, 313}, {75, 353}, {86, 380}, {23, 316}, {134, 426}, {165,
393}, {162, 398}, {136, 420}, {20, 314}, {170, 388}, {163, 397}, {49, 287}, {21,
315}, {95, 369}, {64, 367}, {136, 423}, {79, 352}, {38, 278}, {78, 382}, {44,
284}, {43, 283}, {42, 282}, {124, 332}, {42, 283}, {146, 419}, {65, 368}, {47,
286}, {122, 331}, {127, 334}, {67, 369}, {113, 323}, {114, 320}, {115, 321},
{117, 327}, {119, 325}, {121, 331}, {27, 296}, {150, 421}, {149, 422}, {71,
372}, {46, 285}, {121, 330}, {123, 328}, {126, 333}, {28, 297}, {30, 299}, {93,
360}, {124, 329}, {41, 287}, {179, 389}, {172, 410}, {69, 371}, {68, 370}, {54,
256}, {114, 324}, {116, 322}, {120, 334}, {123, 333}, {15, 312}, {184, 399},
{149, 418}, {135, 432}, {29, 298}, {120, 320}, {178, 394}, {150, 430}, {147,
427}, {146, 426}, {45, 276}, {63, 262}, {61, 260}, {59, 258}, {94, 359}, {12,
310}, {180, 398}, {149, 431}, {148, 430}, {147, 425}, {146, 424}, {39, 285},
{35, 281}, {13, 311}, {108, 342}, {118, 332}, {48, 267}, {186, 385}, {77, 374},
{72, 371}, {62, 261}, {58, 257}, {33, 284}, {73, 372}, {40, 277}, {122, 327},
{11, 309}, {75, 373}, {37, 283}, {34, 284}, {117, 331}, {120, 326}, {26, 293},
{179, 396}, {157, 418}, {60, 259}, {37, 282}, {92, 355}, {95, 352}, {118, 329},
{198, 390}, {198, 391}, {216, 410}, {85, 273}, {203, 399}, {89, 285}, {90, 286},
{91, 287}, {123, 319}, {57, 380}, {72, 269}, {73, 271}, {197, 387}, {196, 386},
{84, 274}, {64, 263}, {69, 269}, {71, 271}, {70, 270}, {101, 301}, {65, 264},
{213, 412}, {67, 266}, {32, 362}, {66, 265}, {213, 414}, {26, 342}, {99, 303},
{66, 268}, {112, 318}, {113, 319}, {68, 267}, {212, 411}, {100, 299}, {39, 375},
{200, 408}, {47, 383}, {87, 263}, {61, 364}, {216, 393}, {199, 406}, {63, 366},
{125, 303}, {58, 361}, {62, 365}, {102, 309}, {111, 316}, {108, 312}, {202,
414}, {69, 272}, {85, 256}, {103, 306}, {110, 315}, {31, 329}, {71, 273}, {70,
272}, {102, 304}, {60, 363}, {79, 280}, {109, 314}, {121, 302}, {31, 327}, {77,
277}, {76, 276}, {75, 275}, {74, 274}, {73, 273}, {72, 272}, {38, 382}, {78,
279}, {119, 301}, {104, 308}, {193, 413}, {27, 326}, {203, 406}, {201, 404},
{197, 408}, {88, 261}, {106, 311}, {107, 310}, {35, 381}, {207, 401}, {201,
407}, {76, 274}, {56, 358}, {40, 374}, {26, 325}, {202, 405}, {200, 407}, {105,
310}, {49, 337}, {208, 432}, {55, 343}, {53, 341}, {52, 340}, {51, 339}, {50,
338}, {123, 283}, {46, 335}, {200, 425}, {44, 334}, {58, 344}, {43, 328}, {200,
427}, {120, 284}, {199, 419}, {107, 270}, {43, 333}, {50, 340}, {110, 264}, {57,
350}, {196, 419}, {32, 328}, {207, 423}, {35, 330}, {197, 428}, {38, 332}, {44,
326}, {54, 349}, {207, 420}, {196, 431}, {64, 299}, {109, 262}, {44, 320}, {59,
342}, {201, 420}, {199, 426}, {85, 312}, {105, 260}, {36, 330}, {47, 321}, {108,
258}, {36, 331}, {199, 424}, {28, 364}, {80, 288}, {29, 365}, {30, 367}, {215,
422}, {53, 324}, {27, 361}, {81, 291}, {49, 322}, {216, 428}, {83, 294}, {216,
429}, {215, 418}, {82, 292}, {52, 323}, {208, 423}, {215, 431}, {68, 317}, {65,
315}, {67, 313}, {89, 290}, {213, 430}, {208, 427}, {208, 429}, {46, 336}, {77,
307}, {47, 336}, {78, 305}, {154, 282}, {130, 259}, {166, 292}, {170, 296},
{164, 295}, {177, 308}, {211, 342}, {196, 321}, {195, 326}, {203, 333}, {197,
322}, {201, 334}, {191, 311}, {194, 328}, {190, 309}, {155, 279}, {170, 294},
{171, 293}, {171, 292}, {137, 281}, {168, 313}, {214, 327}, {169, 317}, {158,
267}, {156, 266}, {211, 325}, {189, 299}, {188, 298}, {186, 300}, {204, 340},
{186, 289}, {206, 341}, {138, 278}, {153, 260}, {175, 306}, {204, 338}, {63,
416}, {214, 329}, {177, 302}, {160, 319}, {131, 291}, {60, 413}, {168, 265},
{159, 318}, {157, 316}, {129, 288}, {61, 415}, {151, 309}, {158, 317}, {59,
415}, {156, 313}, {213, 368}, {169, 268}, {176, 278}, {151, 304}, {207, 360},
{194, 362}, {155, 305}, {195, 361}, {193, 363}, {171, 256}, {212, 376}, {181,
280}, {215, 378}, {176, 286}, {203, 357}, {177, 287}, {141, 290}, {173, 258},
{152, 311}, {182, 262}, {191, 271}, {49, 384}, {169, 280}, {51, 385}, {175,
285}, {55, 388}, {202, 377}, {190, 269}, {154, 297}, {144, 291}, {130, 305},
{167, 275}, {210, 358}, {206, 379}, {52, 386}, {53, 387}, {212, 366}, {168,
275}, {206, 373}, {188, 257}, {183, 264}, {192, 257}, {193, 259}, {137, 330},
{163, 352}, {162, 353}, {66, 390}, {66, 391}, {144, 341}, {78, 392}, {209, 279},
{167, 353}, {138, 332}, {198, 268}, {94, 402}, {109, 416}, {111, 418}, {93,
403}, {141, 323}, {129, 335}, {110, 417}, {198, 265}, {180, 379}, {145, 350},
{115, 419}, {178, 354}, {162, 370}, {94, 396}, {167, 373}, {163, 369}, {143,
349}, {142, 348}, {95, 397}, {131, 337}, {86, 389}, {117, 417}, {205, 281},
{144, 324}, {181, 352}, {188, 361}, {92, 394}, {189, 363}, {133, 339}, {93,
395}, {118, 416}, {92, 395}, {189, 362}, {179, 356}, {132, 339}, {67, 411},
{175, 375}, {164, 380}, {68, 412}, {95, 391}, {116, 428}, {113, 424}, {165,
380}, {141, 340}, {133, 351}, {185, 355}, {184, 354}, {91, 384}, {114, 425},
{122, 417}, {127, 420}, {132, 351}, {115, 431}, {166, 378}, {124, 416}, {80,
397}, {185, 356}, {86, 393}, {184, 359}, {65, 417}, {136, 360}, {117, 405},
{161, 320}, {106, 392}, {157, 383}, {119, 404}, {160, 323}, {135, 356}, {119,
403}, {188, 344}, {148, 368}, {134, 354}, {155, 382}, {161, 324}, {96, 390},
{212, 306}, {143, 360}, {181, 338}, {126, 406}, {206, 294}, {127, 407}, {157,
372}, {186, 339}, {112, 410}, {181, 351}, {151, 381}, {127, 404}, {195, 296},
{116, 408}, {204, 288}, {159, 371}, {158, 370}, {142, 355}, {209, 316}, {204,
289}, {156, 369}, {150, 379}, {96, 398}, {194, 300}, {97, 399}, {122, 405},
{149, 378}, {125, 402}, {112, 384}, {192, 304}, {113, 385}, {97, 400}, {99,
402}, {101, 404}, {115, 386}, {126, 399}, {98, 400}, {193, 307}, {132, 374},
{98, 401}, {205, 318}, {133, 374}, {108, 415}, {81, 421}, {138, 382}, {137,
381}, {210, 295}, {101, 403}, {211, 293}, {171, 349}, {154, 364}, {145, 359},
{104, 414}, {105, 415}, {114, 388}, {106, 413}, {152, 367}, {116, 387}, {129,
376}, {131, 377}, {166, 348}, {164, 350}, {151, 365}, {210, 297}, {103, 411},
{100, 409}, {170, 343}, {166, 347}, {104, 405}, {167, 345}, {202, 308}, {165,
346} }>;
(II) A more general form is to represent the graph as the orbit of {192, 226}
under the group generated by the following permutations:
a: (113, 160) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (61, 105)
c: (13, 191)
d: (96, 162)
e: (44, 120)
f: (51, 186)
g: (25, 205)
h: (21, 48)
m: (101, 119)
n1: (111, 157)
a1: (50, 204)
b1: (14, 70)
c1: (59, 108)
d1: (117, 122)
e1: (60, 193)
f1: (71, 73)
g1: (97, 184)
h1: (37, 42)
m1: (67, 156)
n2: (80, 129)
a2: (112, 159)
b2: (58, 188)
c2: (32, 194)
d2: (23, 209)
e2: (148, 213)
f2: (16, 192)
g2: (83, 206)
h2: (2, 5)(3, 9)(4, 12)(7, 18)(8, 19)(10, 24)(11, 27)(13, 32)(14, 33)(15,
37)(17, 40)(22, 50)(23, 51)(25, 55)(26, 56)(28, 59)(31, 66)(34, 70)(35, 74)(36,
75)(38, 79)(39, 80)(41, 83)(42, 85)(43, 71)(44, 69)(47, 52)(49, 53)(54, 99)(57,
101)(58, 102)(63, 67)(65, 68)(72, 120)(73, 123)(76, 128)(77, 130)(78, 132)(82,
126)(84, 137)(86, 127)(87, 139)(88, 140)(90, 141)(91, 144)(92, 97)(93, 94)(95,
118)(96, 117)(100, 106)(104, 150)(107, 153)(108, 154)(109, 156)(110, 158)(111,
113)(112, 114)(119, 164)(121, 167)(122, 162)(124, 163)(125, 171)(129, 175)(133,
155)(135, 136)(138, 181)(142, 184)(143, 145)(146, 149)(147, 172)(151, 188)(152,
189)(157, 160)(159, 161)(165, 201)(166, 203)(168, 182)(169, 183)(170, 205)(176,
204)(177, 206)(179, 207)(180, 202)(186, 209)(190, 195)(191, 194)(198, 214)(199,
215)(200, 216)(210, 211)(217, 219)(218, 222)(220, 228)(221, 231)(223, 236)(224,
239)(225, 242)(226, 244)(227, 245)(229, 250)(230, 253)(232, 258)(233, 261)(234,
263)(235, 265)(237, 268)(238, 270)(240, 274)(241, 275)(243, 280)(246, 276)(247,
277)(248, 288)(249, 289)(251, 294)(252, 296)(254, 300)(255, 301)(256, 303)(257,
304)(259, 307)(260, 310)(262, 313)(264, 317)(266, 314)(267, 315)(269, 326)(271,
328)(272, 284)(273, 283)(278, 338)(279, 339)(281, 343)(282, 312)(285, 335)(286,
340)(287, 341)(290, 336)(291, 337)(292, 357)(293, 358)(295, 325)(297, 342)(298,
365)(299, 367)(302, 373)(305, 374)(306, 376)(308, 379)(309, 361)(311, 362)(316,
385)(318, 388)(319, 372)(320, 371)(321, 386)(322, 387)(323, 383)(324, 384)(327,
390)(329, 391)(330, 345)(331, 353)(332, 352)(333, 347)(334, 346)(344, 381)(348,
399)(349, 402)(350, 403)(351, 382)(354, 394)(355, 400)(356, 401)(359, 395)(360,
396)(363, 413)(364, 415)(366, 411)(368, 412)(369, 416)(370, 417)(375, 397)(377,
421)(378, 406)(380, 404)(389, 420)(392, 409)(393, 407)(398, 405)(408, 428)(410,
425)(414, 430)(418, 424)(419, 431)(422, 426)(423, 432)(427, 429)
m2: (30, 64)
n3: (136, 207)
a3: (26, 211)
b3: (81, 131)
c3: (15, 85)
d3: (75, 167)
e3: (103, 212)
f3: (5, 88)
g3: (94, 145)
h3: (118, 124)
m3: (79, 181)
n4: (38, 138)
a4: (2, 4)(3, 7)(5, 12)(6, 16)(8, 13)(9, 18)(10, 22)(11, 26)(14, 33)(15, 35)(17,
39)(19, 32)(20, 30)(21, 46)(23, 31)(24, 50)(25, 54)(27, 56)(28, 58)(29, 61)(34,
70)(36, 71)(37, 74)(40, 80)(41, 82)(42, 84)(43, 75)(44, 57)(45, 64)(47, 65)(48,
89)(49, 92)(51, 66)(52, 68)(53, 97)(55, 99)(59, 102)(60, 103)(62, 105)(63,
106)(67, 100)(69, 101)(72, 119)(73, 121)(76, 87)(77, 129)(78, 118)(81, 134)(83,
126)(85, 137)(86, 127)(88, 107)(90, 110)(91, 142)(93, 112)(94, 114)(95, 132)(96,
113)(98, 116)(104, 149)(108, 151)(109, 152)(111, 117)(115, 148)(120, 164)(122,
157)(123, 167)(124, 155)(125, 170)(128, 139)(130, 175)(131, 178)(133, 163)(135,
147)(136, 172)(140, 153)(141, 158)(143, 159)(144, 184)(145, 161)(146, 150)(154,
188)(156, 189)(160, 162)(165, 201)(166, 177)(168, 194)(169, 204)(171, 205)(173,
192)(176, 183)(179, 200)(180, 199)(182, 191)(185, 197)(186, 198)(190, 211)(193,
212)(195, 210)(196, 213)(202, 215)(203, 206)(207, 216)(209, 214)(217, 218)(219,
222)(220, 226)(221, 230)(223, 227)(224, 238)(225, 240)(228, 244)(229, 248)(231,
253)(232, 257)(233, 260)(234, 246)(235, 254)(236, 245)(237, 249)(239, 270)(241,
271)(242, 274)(243, 278)(247, 285)(250, 288)(251, 292)(252, 293)(255, 284)(256,
281)(258, 304)(259, 306)(261, 310)(262, 311)(263, 276)(264, 286)(265, 300)(266,
299)(267, 290)(268, 289)(269, 325)(272, 301)(273, 330)(275, 328)(277, 335)(279,
329)(280, 338)(282, 344)(283, 345)(287, 348)(291, 354)(294, 357)(295, 326)(296,
358)(297, 361)(298, 364)(302, 347)(303, 343)(305, 375)(307, 376)(308, 378)(309,
342)(312, 381)(313, 362)(314, 367)(315, 336)(316, 327)(317, 340)(318, 349)(319,
353)(320, 350)(321, 368)(322, 355)(323, 370)(324, 359)(331, 372)(332, 382)(333,
373)(334, 380)(337, 394)(339, 391)(341, 399)(346, 404)(351, 352)(356, 408)(360,
410)(363, 411)(365, 415)(366, 413)(369, 409)(371, 403)(374, 397)(377, 422)(379,
406)(383, 417)(384, 395)(385, 390)(386, 412)(387, 400)(388, 402)(389, 407)(392,
416)(393, 420)(396, 425)(398, 424)(401, 428)(405, 418)(414, 431)(419, 430)(421,
426)(423, 429)(427, 432)
b4: (39, 175)
c4: (150, 180)
d4: (78, 155)
e4: (54, 171)
f4: (2, 140)
g4: (127, 201)
h4: (31, 214)
m4: (29, 62)
n5: (12, 107)
a5: (56, 210)
b5: (93, 143)
c5: (99, 125)
d5: (116, 197)
e5: (115, 196)
f5: (66, 198)
g5: (20, 45)
h5: (92, 142)
m5: (68, 158)
n6: (47, 90)
a6: (132, 133)
b6: (4, 153)
c6: (98, 185)
d6: (18, 76)
e6: (49, 91)
f6: (86, 165)
g6: (69, 72)
h6: (9, 87)
m6: (100, 189)
n7: (22, 176)
a7: (19, 168)
b7: (8, 182)
c7: (55, 170)
d7: (6, 173)
e7: (3, 139)
f7: (114, 161)
g7: (104, 202)
h7: (147, 200)
m7: (82, 166)
n8: (63, 109)
a8: (33, 34)
b8: (7, 128)
c8: (27, 195)
d8: (172, 216)
e8: (41, 177)
f8: (11, 190)
g8: (126, 203)
h8: (102, 151)
m8: (57, 164)
n9: (28, 154)
a9: (106, 152)
b9: (40, 77)
c9: (74, 84)
d9: (43, 123)
e9: (149, 215)
f9: (65, 110)
g9: (36, 121)
h9: (134, 178)
m9: (95, 163)
n10: (17, 130)
a10: (35, 137)
b10: (1, 2)(3, 8)(4, 11)(5, 14)(6, 7)(9, 20)(10, 23)(12, 29)(13, 31)(15, 36)(16,
28)(17, 22)(18, 37)(19, 43)(21, 47)(24, 52)(25, 26)(27, 57)(30, 63)(32, 67)(33,
69)(34, 72)(35, 59)(38, 78)(39, 60)(40, 46)(41, 54)(42, 76)(44, 86)(45, 87)(48,
90)(49, 93)(50, 79)(51, 95)(53, 98)(55, 94)(56, 58)(61, 102)(62, 107)(64,
109)(65, 111)(66, 113)(68, 115)(70, 88)(71, 117)(73, 122)(74, 99)(75, 126)(77,
89)(80, 132)(81, 92)(82, 104)(83, 97)(84, 125)(85, 121)(91, 143)(96, 146)(100,
103)(101, 112)(105, 151)(106, 118)(108, 137)(110, 157)(114, 135)(116, 136)(119,
159)(120, 165)(123, 168)(124, 152)(127, 172)(128, 173)(129, 133)(130, 176)(131,
142)(134, 150)(138, 155)(139, 182)(140, 174)(141, 169)(144, 185)(145, 170)(147,
187)(148, 149)(153, 190)(154, 192)(156, 194)(158, 196)(160, 198)(161, 179)(162,
199)(163, 186)(164, 195)(166, 202)(167, 203)(171, 177)(175, 193)(178, 180)(181,
204)(183, 209)(184, 206)(188, 210)(189, 212)(191, 214)(197, 207)(200, 208)(201,
216)(205, 211)(213, 215)(218, 221)(219, 224)(220, 227)(222, 233)(223, 235)(225,
241)(226, 232)(228, 246)(229, 249)(230, 252)(231, 255)(234, 262)(236, 266)(237,
254)(238, 269)(239, 272)(240, 258)(242, 276)(243, 279)(244, 282)(245, 283)(247,
286)(248, 259)(250, 290)(251, 293)(253, 298)(256, 302)(257, 297)(260, 309)(261,
270)(263, 314)(264, 316)(265, 319)(267, 321)(268, 323)(271, 327)(273, 331)(274,
303)(275, 333)(277, 336)(278, 305)(280, 340)(281, 342)(284, 346)(285, 307)(287,
349)(288, 351)(289, 352)(291, 355)(292, 308)(294, 359)(295, 361)(296, 350)(299,
366)(300, 369)(301, 371)(304, 364)(306, 363)(310, 365)(311, 329)(312, 330)(313,
328)(315, 383)(317, 386)(318, 325)(320, 389)(322, 360)(324, 356)(326, 380)(332,
392)(334, 393)(335, 374)(337, 395)(339, 397)(341, 400)(343, 402)(344, 358)(345,
357)(347, 405)(348, 377)(353, 406)(354, 379)(362, 411)(367, 416)(368, 418)(370,
419)(372, 417)(373, 399)(375, 413)(376, 409)(378, 414)(381, 415)(384, 403)(385,
391)(387, 401)(388, 396)(390, 424)(394, 421)(398, 426)(404, 410)(407, 429)(408,
423)(412, 431)(420, 428)(422, 430)(425, 432)
c10: (187, 208)
d10: (10, 183)
e10: (24, 169)
f10: (53, 144)
g10: (52, 141)
h10: (46, 89)
m10: (146, 199)
C4[ 432, 191 ]
432
-1 222 217 218 219
-2 221 233 224 217
-3 220 223 234 225
-4 238 260 218 230
-5 231 239 261 219
-6 220 232 258 228
-7 246 226 227 240
-8 235 227 262 241
-9 242 236 228 263
-10 264 243 237 229
-11 221 309 269 252
-12 253 222 310 270
-13 254 223 311 271
-14 255 224 270 272
-15 256 312 225 273
-16 244 257 226 304
-17 247 259 305 229
-18 276 244 245 274
-19 275 265 245 313
-20 276 266 246 314
-21 277 267 247 315
-22 286 278 248 249
-23 254 279 249 316
-24 268 280 250 317
-25 281 251 252 318
-26 342 325 293 230
-27 231 326 361 296
-28 297 232 364 282
-29 298 233 365 261
-30 299 234 367 263
-31 235 237 327 329
-32 300 236 328 362
-33 301 238 239 284
-34 301 238 239 284
-35 330 281 381 240
-36 330 331 302 241
-37 242 303 282 283
-38 243 332 278 382
-39 375 248 306 285
-40 374 277 250 307
-41 308 287 302 251
-42 242 303 282 283
-43 319 333 283 328
-44 320 334 326 284
-45 276 266 246 314
-46 290 335 336 285
-47 286 321 336 383
-48 277 267 247 315
-49 287 322 337 384
-50 288 289 338 340
-51 385 289 300 339
-52 386 290 323 340
-53 341 387 291 324
-54 256 292 293 349
-55 343 388 294 296
-56 253 297 358 295
-57 255 380 295 350
-58 298 344 257 361
-59 342 312 258 415
-60 363 259 413 307
-61 364 310 260 415
-62 298 233 365 261
-63 366 314 262 416
-64 299 234 367 263
-65 264 368 315 417
-66 265 268 390 391
-67 266 411 313 369
-68 267 412 370 317
-69 269 346 272 371
-70 255 224 270 272
-71 347 271 273 372
-72 269 346 272 371
-73 347 271 273 372
-74 343 344 345 274
-75 275 353 345 373
-76 276 244 245 274
-77 374 277 250 307
-78 279 392 305 382
-79 352 280 338 351
-80 397 288 376 335
-81 377 421 291 337
-82 378 292 347 348
-83 341 379 294 373
-84 343 344 345 274
-85 256 312 225 273
-86 389 346 380 393
-87 242 236 228 263
-88 231 239 261 219
-89 290 335 336 285
-90 286 321 336 383
-91 287 322 337 384
-92 355 348 394 395
-93 403 349 360 395
-94 396 402 359 350
-95 352 397 369 391
-96 353 398 390 370
-97 354 399 400 359
-98 355 356 400 401
-99 357 303 358 402
-100 363 299 409 362
-101 301 325 403 404
-102 309 365 304 381
-103 376 366 411 306
-104 308 377 414 405
-105 364 310 260 415
-106 311 367 413 392
-107 253 222 310 270
-108 342 312 258 415
-109 366 314 262 416
-110 264 368 315 417
-111 418 316 372 383
-112 410 371 318 384
-113 319 385 323 424
-114 320 388 324 425
-115 386 419 321 431
-116 408 387 322 428
-117 331 327 405 417
-118 375 332 416 329
-119 301 325 403 404
-120 320 334 326 284
-121 330 331 302 241
-122 331 327 405 417
-123 319 333 283 328
-124 375 332 416 329
-125 357 303 358 402
-126 333 399 357 406
-127 407 420 334 404
-128 246 226 227 240
-129 397 288 376 335
-130 247 259 305 229
-131 377 421 291 337
-132 374 409 339 351
-133 374 409 339 351
-134 354 422 426 394
-135 396 432 356 389
-136 420 401 423 360
-137 330 281 381 240
-138 243 332 278 382
-139 220 223 234 225
-140 221 233 224 217
-141 386 290 323 340
-142 355 348 394 395
-143 403 349 360 395
-144 341 387 291 324
-145 396 402 359 350
-146 419 424 426 406
-147 407 408 425 427
-148 430 368 412 414
-149 418 431 378 422
-150 430 398 421 379
-151 309 365 304 381
-152 311 367 413 392
-153 238 260 218 230
-154 297 232 364 282
-155 279 392 305 382
-156 266 411 313 369
-157 418 316 372 383
-158 267 412 370 317
-159 410 371 318 384
-160 319 385 323 424
-161 320 388 324 425
-162 353 398 390 370
-163 352 397 369 391
-164 255 380 295 350
-165 389 346 380 393
-166 378 292 347 348
-167 275 353 345 373
-168 275 265 245 313
-169 268 280 250 317
-170 343 388 294 296
-171 256 292 293 349
-172 429 410 393 428
-173 220 232 258 228
-174 222 217 218 219
-175 375 248 306 285
-176 286 278 248 249
-177 308 287 302 251
-178 354 422 426 394
-179 396 432 356 389
-180 430 398 421 379
-181 352 280 338 351
-182 235 227 262 241
-183 264 243 237 229
-184 354 399 400 359
-185 355 356 400 401
-186 385 289 300 339
-187 429 432 423 427
-188 298 344 257 361
-189 363 299 409 362
-190 221 309 269 252
-191 254 223 311 271
-192 244 257 226 304
-193 363 259 413 307
-194 300 236 328 362
-195 231 326 361 296
-196 386 419 321 431
-197 408 387 322 428
-198 265 268 390 391
-199 419 424 426 406
-200 407 408 425 427
-201 407 420 334 404
-202 308 377 414 405
-203 333 399 357 406
-204 288 289 338 340
-205 281 251 252 318
-206 341 379 294 373
-207 420 401 423 360
-208 429 432 423 427
-209 254 279 249 316
-210 253 297 358 295
-211 342 325 293 230
-212 376 366 411 306
-213 430 368 412 414
-214 235 237 327 329
-215 418 431 378 422
-216 429 410 393 428
-217 1 2 140 174
-218 1 4 174 153
-219 88 1 5 174
-220 3 6 139 173
-221 11 2 190 140
-222 1 12 107 174
-223 13 3 191 139
-224 2 14 70 140
-225 3 15 139 85
-226 16 192 7 128
-227 182 7 128 8
-228 6 173 9 87
-229 17 183 130 10
-230 211 4 26 153
-231 88 5 27 195
-232 154 6 28 173
-233 2 29 62 140
-234 3 139 30 64
-235 214 182 8 31
-236 194 9 32 87
-237 214 183 31 10
-238 33 34 4 153
-239 33 88 34 5
-240 35 137 7 128
-241 121 36 182 8
-242 37 9 42 87
-243 38 138 183 10
-244 16 192 18 76
-245 168 18 19 76
-246 45 7 128 20
-247 48 17 130 21
-248 22 176 39 175
-249 22 176 209 23
-250 77 24 169 40
-251 177 25 205 41
-252 11 25 190 205
-253 12 56 210 107
-254 209 23 13 191
-255 57 14 70 164
-256 15 171 85 54
-257 188 58 16 192
-258 59 6 173 108
-259 60 17 193 130
-260 4 61 105 153
-261 88 5 29 62
-262 182 8 63 109
-263 30 9 64 87
-264 110 183 10 65
-265 66 198 168 19
-266 45 67 156 20
-267 68 48 158 21
-268 66 198 24 169
-269 11 69 190 72
-270 12 14 70 107
-271 13 191 71 73
-272 14 69 70 72
-273 15 71 73 85
-274 18 84 74 76
-275 167 168 19 75
-276 45 18 20 76
-277 77 48 40 21
-278 22 176 38 138
-279 209 23 78 155
-280 24 79 169 181
-281 35 25 137 205
-282 154 37 28 42
-283 123 37 42 43
-284 33 44 34 120
-285 89 46 39 175
-286 22 176 90 47
-287 177 91 49 41
-288 80 50 204 129
-289 50 204 51 186
-290 89 46 52 141
-291 144 81 53 131
-292 166 82 171 54
-293 211 26 171 54
-294 55 170 83 206
-295 56 210 57 164
-296 55 27 170 195
-297 154 56 210 28
-298 188 58 29 62
-299 100 189 30 64
-300 51 194 32 186
-301 33 34 101 119
-302 121 177 36 41
-303 99 37 125 42
-304 102 16 192 151
-305 78 155 17 130
-306 212 103 39 175
-307 77 60 193 40
-308 177 202 104 41
-309 11 102 190 151
-310 12 61 105 107
-311 13 191 106 152
-312 15 59 85 108
-313 67 156 168 19
-314 45 63 20 109
-315 110 48 21 65
-316 209 23 111 157
-317 24 68 158 169
-318 112 25 159 205
-319 123 113 160 43
-320 44 114 161 120
-321 90 47 115 196
-322 91 49 116 197
-323 113 160 52 141
-324 144 114 161 53
-325 101 211 26 119
-326 44 27 195 120
-327 122 214 117 31
-328 123 194 32 43
-329 124 214 118 31
-330 121 35 36 137
-331 121 122 36 117
-332 124 38 138 118
-333 123 126 203 43
-334 44 201 127 120
-335 89 46 80 129
-336 89 46 90 47
-337 91 81 49 131
-338 79 181 50 204
-339 132 133 51 186
-340 50 204 52 141
-341 144 83 206 53
-342 211 26 59 108
-343 55 170 84 74
-344 188 58 84 74
-345 167 84 74 75
-346 165 69 72 86
-347 166 71 82 73
-348 166 92 82 142
-349 143 93 171 54
-350 57 145 94 164
-351 132 133 79 181
-352 79 181 95 163
-353 167 96 162 75
-354 134 178 184 97
-355 92 185 98 142
-356 135 179 185 98
-357 99 125 126 203
-358 99 56 210 125
-359 145 94 184 97
-360 143 136 93 207
-361 188 58 27 195
-362 100 189 194 32
-363 100 189 60 193
-364 154 28 61 105
-365 102 29 62 151
-366 212 103 63 109
-367 106 30 64 152
-368 110 213 148 65
-369 67 156 95 163
-370 68 158 96 162
-371 112 69 159 72
-372 111 157 71 73
-373 167 83 206 75
-374 77 132 133 40
-375 124 39 118 175
-376 80 212 103 129
-377 81 202 104 131
-378 166 82 149 215
-379 180 83 150 206
-380 165 57 86 164
-381 35 102 137 151
-382 78 155 38 138
-383 111 90 47 157
-384 112 91 49 159
-385 113 160 51 186
-386 115 52 141 196
-387 144 116 53 197
-388 55 114 170 161
-389 165 135 179 86
-390 66 198 96 162
-391 66 198 95 163
-392 78 155 106 152
-393 165 172 216 86
-394 134 178 92 142
-395 143 92 93 142
-396 145 135 179 94
-397 80 95 129 163
-398 180 150 96 162
-399 126 203 184 97
-400 184 97 185 98
-401 136 185 207 98
-402 99 145 125 94
-403 143 101 93 119
-404 101 201 127 119
-405 122 202 104 117
-406 199 146 126 203
-407 200 201 147 127
-408 200 147 116 197
-409 132 100 133 189
-410 112 159 172 216
-411 67 156 212 103
-412 68 158 213 148
-413 60 193 106 152
-414 202 213 104 148
-415 59 61 105 108
-416 124 63 118 109
-417 110 122 117 65
-418 111 157 149 215
-419 199 146 115 196
-420 201 136 127 207
-421 81 180 150 131
-422 134 178 149 215
-423 187 136 207 208
-424 199 113 146 160
-425 200 114 147 161
-426 199 134 178 146
-427 187 200 147 208
-428 116 172 216 197
-429 187 172 216 208
-430 180 213 148 150
-431 115 149 215 196
-432 187 135 179 208
0