C4graphConstructions for C4[ 448, 9 ] = {4,4}_<58,54>

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 448, 9 ]. See Glossary for some detail.

{4, 4}_< 58, 54> = MPS(112, 8; 1) = MPS(112, 8; 3)

      = PS( 4,224; 55) = PS( 4,224; 57) = MPS( 4,224; 1)

      = MPS( 4,224;111) = R_224(110, 1) = R_224( 2, 113)

      = R_224(222, 113) = R_224(114, 1) = PL(MC3( 4, 56, 1, 29, 29, 26, 1), [4^56, 112^2])

      = PL(MC3( 4, 56, 1, 29, 29, 54, 1), [4^56, 112^2]) = PL(MC3( 8, 28, 1, 15, 15, 26, 1), [4^56, 112^2]) = PL(MC3( 14, 16, 1, 9, 9, 6, 1), [4^56, 112^2])

      = PL(MC3( 14, 16, 1, 9, 9, 14, 1), [4^56, 112^2]) = PL(MC3( 28, 8, 1, 5, 5, 2, 1), [4^56, 112^2]) = PL(MC3( 28, 8, 1, 5, 5, 6, 1), [4^56, 112^2])

      = PL(MBr( 2, 112; 55)) = PL(BC_112({ 0, 56 }, { 1, 55 }) = UG(ATD[448, 25])

      = UG(ATD[448, 26]) = UG(ATD[448, 27]) = MG(Rmap(448, 84) { 8,224| 2}_224)

      = DG(Rmap(448, 84) { 8,224| 2}_224) = MG(Rmap(448, 85) { 8,224| 4}_224) = DG(Rmap(448, 85) { 8,224| 4}_224)

      = DG(Rmap(448, 86) {224, 8| 2}_224) = DG(Rmap(448, 87) {224, 8| 4}_224) = BGCG(W( 56, 2); K2;{5, 6})

      = AT[448, 46]

Cyclic coverings

mod 224:
12
1 1 223 0 114
2 0 110 1 223

mod 224:
12
1 1 223 0 222
2 0 2 111 113