[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 448, 29 ]. See Glossary for some
detail.
PL(MSY( 4, 56, 27, 28)) = PL(MSY( 4, 56, 29, 28)) = PL(MSY( 28, 8, 3,
4))
= PL(MSY( 28, 8, 5, 4)) = PL(MC3( 4, 56, 1, 43, 15, 12, 1), [8^28, 56^4])
= PL(MC3( 4, 56, 1, 43, 29, 12, 1), [8^28, 56^4])
= PL(MC3( 4, 56, 1, 27, 29, 28, 1), [8^28, 56^4]) = PL(MC3( 28, 8, 1, 3,
5, 4, 1), [8^28, 56^4]) = PL(KE_ 56( 1, 29, 2, 1, 27), [8^28, 56^4])
= PL(Curtain_ 56( 1, 27, 28, 29, 55), [8^28, 56^4]) = PL(MBr( 28, 8; 3)) =
PL(MBr( 4, 56; 27))
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | 0 | 0 | 30 | 30 |
3 | - | - | - | - | 1 | 0 | 29 | 2 |
4 | - | - | - | - | 27 | 0 | 29 | 28 |
5 | 0 | 0 | 55 | 29 | - | - | - | - |
6 | 0 | 0 | 0 | 0 | - | - | - | - |
7 | 0 | 26 | 27 | 27 | - | - | - | - |
8 | 0 | 26 | 54 | 28 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | 0 | 0 | 1 | 43 |
3 | - | - | - | - | 29 | 15 | 1 | 43 |
4 | - | - | - | - | 29 | 15 | 44 | 44 |
5 | 0 | 0 | 27 | 27 | - | - | - | - |
6 | 0 | 0 | 41 | 41 | - | - | - | - |
7 | 0 | 55 | 55 | 12 | - | - | - | - |
8 | 0 | 13 | 13 | 12 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 7 | 0 21 | - | - |
2 | - | - | - | - | 0 7 | - | - | 0 21 |
3 | - | - | - | - | - | - | 0 49 | 0 21 |
4 | - | - | - | - | - | 1 36 | 0 49 | - |
5 | 0 49 | 0 49 | - | - | - | - | - | - |
6 | 0 35 | - | - | 20 55 | - | - | - | - |
7 | - | - | 0 7 | 0 7 | - | - | - | - |
8 | - | 0 35 | 0 35 | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | 0 | - | 0 |
2 | - | - | - | - | 0 27 | 0 | - | 26 |
3 | - | - | - | - | - | 0 | 0 27 | 54 |
4 | - | - | - | - | - | 0 | 0 1 | 28 |
5 | 0 55 | 0 29 | - | - | - | - | - | - |
6 | 0 | 0 | 0 | 0 | - | - | - | - |
7 | - | - | 0 29 | 0 55 | - | - | - | - |
8 | 0 | 30 | 2 | 28 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | 0 1 | - | - |
2 | - | - | - | - | 27 | 0 | 0 | 0 |
3 | - | - | - | - | 29 | 0 | 0 | 2 |
4 | - | - | - | - | - | - | 0 29 | 1 30 |
5 | 0 55 | 29 | 27 | - | - | - | - | - |
6 | 0 55 | 0 | 0 | - | - | - | - | - |
7 | - | 0 | 0 | 0 27 | - | - | - | - |
8 | - | 0 | 54 | 26 55 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 1 | 0 1 | - | - |
2 | - | - | - | - | - | 0 27 | 0 27 | - |
3 | - | - | - | - | - | - | 0 1 | 0 55 |
4 | - | - | - | - | 0 27 | - | - | 27 54 |
5 | 0 55 | - | - | 0 29 | - | - | - | - |
6 | 0 55 | 0 29 | - | - | - | - | - | - |
7 | - | 0 29 | 0 55 | - | - | - | - | - |
8 | - | - | 0 1 | 2 29 | - | - | - | - |