C4graphConstructions for C4[ 448, 64 ] = UG(ATD[448,46])

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 448, 64 ]. See Glossary for some detail.

UG(ATD[448, 46]) = UG(ATD[448, 47]) = UG(ATD[448, 48])

      = UG(Rmap(896, 33) { 56, 4| 8}_ 56) = UG(Rmap(896, 34) { 56, 4| 8}_ 56) = MG(Rmap(448, 47) { 8, 56| 4}_ 56)

      = DG(Rmap(448, 47) { 8, 56| 4}_ 56) = MG(Rmap(448, 51) { 8, 56| 4}_ 56) = DG(Rmap(448, 51) { 8, 56| 4}_ 56)

      = DG(Rmap(448, 64) { 56, 8| 4}_ 56) = DG(Rmap(448, 65) { 56, 8| 4}_ 56) = BGCG(K_4,4, C_ 28, 1)

      = BGCG(W( 28, 2), C_ 4, 1) = AT[448, 13]

Cyclic coverings

mod 56:
12345678
1 - 0 0 0 2 - - - -
2 0 - 1 3 - 0 - - -
3 0 53 55 - - 52 - - -
4 0 54 - - - - 0 0 -
5 - 0 4 - - - - 22 24
6 - - - 0 - - 53 55 18
7 - - - 0 - 1 3 - 22
8 - - - - 32 34 38 34 -

mod 56:
12345678
1 - 0 0 0 0 - - -
2 0 1 55 - 3 - - - -
3 0 - - 55 - 30 32 - -
4 0 53 1 - - - 0 -
5 0 - - - - 34 4 0
6 - - 24 26 - 22 - 27 -
7 - - - 0 52 29 - 55
8 - - - - 0 - 1 1 55

mod 56:
12345678
1 - 0 1 0 0 - - - -
2 0 55 - - - 0 0 - -
3 0 - - - 2 29 - 40 -
4 0 - - - - 27 28 10 -
5 - 0 27 54 - - - - 0
6 - 0 - 28 29 - - - 30
7 - - 16 46 - - - 19 46
8 - - - - 0 26 10 37 -

mod 56:
12345678
1 1 55 0 0 - - - - -
2 0 - - 0 0 54 - - -
3 0 - - 52 - 0 2 - -
4 - 0 4 1 55 - - - -
5 - 0 2 - - - - 0 0
6 - - 0 54 - - - 50 54
7 - - - - 0 6 1 55 -
8 - - - - 0 2 - 1 55