C4graphConstructions for C4[ 448, 72 ] = UG(ATD[448,86])

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 448, 72 ]. See Glossary for some detail.

UG(ATD[448, 86]) = UG(ATD[448, 87]) = UG(ATD[448, 88])

      = MG(Rmap(448, 12) { 4, 56| 8}_ 56) = DG(Rmap(448, 12) { 4, 56| 8}_ 56) = MG(Rmap(448, 13) { 4, 56| 8}_ 56)

      = DG(Rmap(448, 13) { 4, 56| 8}_ 56) = DG(Rmap(448, 15) { 56, 4| 8}_ 56) = DG(Rmap(448, 16) { 56, 4| 8}_ 56)

      = PL(MSY( 4, 56, 29, 4)[ 8^ 56]) = AT[448, 41]

Cyclic coverings

mod 56:
12345678
1 - 0 1 - - - 0 13 - -
2 0 55 - - 0 0 - - -
3 - - - 40 38 - - 0 29
4 - 0 16 - - 55 13 -
5 - 0 18 - - 13 1 -
6 0 43 - - 1 43 - - -
7 - - - 43 55 - - 17 32
8 - - 0 27 - - - 24 39 -

mod 56:
12345678
1 - 0 - 0 0 38 - - -
2 0 - 0 1 - - 0 -
3 - 0 - - 38 35 27 -
4 0 55 - - - 54 - 37
5 0 18 - 18 - - 54 - -
6 - - 21 2 2 - - 12
7 - 0 29 - - - - 20 38
8 - - - 19 - 44 18 36 -

mod 56:
12345678
1 1 55 0 0 - - - - -
2 0 - 1 - 29 - 29 -
3 0 55 - 0 - 0 - -
4 - - 0 - 24 29 - 5
5 - 27 - 32 - - 27 38
6 - - 0 27 - 27 29 - -
7 - 27 - - 29 - 27 29 -
8 - - - 51 18 - - 1 55

mod 56:
12345678
1 1 55 0 - - 0 - - -
2 0 - - 0 55 0 - -
3 - - 27 29 24 - - 0 -
4 - 0 32 - - - 5 26
5 0 1 - - - 4 10 -
6 - 0 - - 52 - - 26 52
7 - - 0 51 46 - - 46
8 - - - 30 - 4 30 10 -