C4graphConstructions for C4[ 480, 63 ] = PL(MSY(4,60,29,0))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 480, 63 ]. See Glossary for some detail.

PL(MSY( 4, 60, 29, 0)) = PL(MSY( 4, 60, 31, 0)) = PL(MC3( 4, 60, 1, 59, 29, 0, 1), [4^60, 60^4])

      = PL(MC3( 4, 60, 1, 59, 31, 0, 1), [4^60, 60^4]) = PL(KE_ 60( 1, 31, 2, 31, 1), [4^60, 60^4]) = PL(Curtain_ 60( 1, 30, 28, 57, 58), [4^60, 60^4])

      = PL(Br( 4, 60; 29)) = PL(ATD[ 60, 25]#DCyc[ 4]) = PL(CS(W( 30, 2)[ 60^ 2], 0))

      = BGCG(W( 30, 2), C_ 4, {2, 4, 5, 7', 8'})

Cyclic coverings

mod 60:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - 1 0 31 32
4 - - - - 59 0 31 30
5 0 0 59 1 - - - -
6 0 0 0 0 - - - -
7 0 58 29 29 - - - -
8 0 58 28 30 - - - -

mod 60:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - - 0 1 31 32 -
4 - - - - 0 1 - - 31 32
5 0 0 - 0 59 - - - -
6 0 0 0 59 - - - - -
7 0 58 28 29 - - - - -
8 0 58 - 28 29 - - - -

mod 60:
12345678
1 - - - - 0 0 - 0 45
2 - - - - 0 0 0 15 -
3 - - - - 1 31 0 15 -
4 - - - - 1 31 - 17 32
5 0 0 59 59 - - - -
6 0 0 29 29 - - - -
7 - 0 45 0 45 - - - - -
8 0 15 - - 28 43 - - - -

mod 60:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 29 0 29 -
3 - - - - - - 0 1 0 1
4 - - - - 0 29 - - 0 29
5 0 59 - - 0 31 - - - -
6 0 59 0 31 - - - - - -
7 - 0 31 0 59 - - - - -
8 - - 0 59 0 31 - - - -

mod 60:
12345678
1 - - - - 0 1 0 31 - -
2 - - - - 0 0 0 0
3 - - - - - - 0 29 0 59
4 - - - - 57 27 29 59
5 0 59 0 - 3 - - - -
6 0 29 0 - 33 - - - -
7 - 0 0 31 31 - - - -
8 - 0 0 1 1 - - - -