[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 480, 90 ]. See Glossary for some
detail.
MSZ ( 40, 12, 3, 5) = MSZ ( 40, 12, 7, 5) = MSZ ( 40, 12, 13, 5)
= MSZ ( 40, 12, 17, 5) = UG(ATD[480, 271]) = UG(Cmap(960, 35) { 12, 4|
40}_120)
= UG(Cmap(960, 42) { 12, 4| 40}_120) = MG(Cmap(480, 83) { 12, 12| 60}_ 40) =
MG(Cmap(480, 88) { 12, 12| 60}_ 40)
= AT[480, 42]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | - | - | 0 21 |
2 | 0 | - | 0 | - | 0 39 | - | - | - |
3 | - | 0 | - | 6 | - | 0 21 | - | - |
4 | 0 | - | 54 | - | - | - | 33 54 | - |
5 | - | 0 21 | - | - | - | 1 | - | 1 |
6 | - | - | 0 39 | - | 59 | - | 59 | - |
7 | - | - | - | 6 27 | - | 1 | - | 7 |
8 | 0 39 | - | - | - | 59 | - | 53 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 1 | - | - | - | - | - | 0 41 |
2 | 0 59 | - | 0 41 | - | - | - | - | - |
3 | - | 0 19 | - | 0 1 | - | - | - | - |
4 | - | - | 0 59 | - | 0 41 | - | - | - |
5 | - | - | - | 0 19 | - | 0 1 | - | - |
6 | - | - | - | - | 0 59 | - | 0 41 | - |
7 | - | - | - | - | - | 0 19 | - | 29 30 |
8 | 0 19 | - | - | - | - | - | 30 31 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | 0 | - | 0 |
2 | 0 | - | 0 | - | 0 | - | 0 | - |
3 | - | 0 | - | 1 | - | 6 | - | 41 |
4 | 0 | - | 59 | - | 40 | - | 5 | - |
5 | - | 0 | - | 20 | - | 26 | - | 6 |
6 | 0 | - | 54 | - | 34 | - | 40 | - |
7 | - | 0 | - | 55 | - | 20 | - | 1 |
8 | 0 | - | 19 | - | 54 | - | 59 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | 0 34 | - | - | - | - | - | - | - |
2 | 0 | - | 0 | 1 35 | - | - | - | - | - | - | - | - |
3 | - | 0 | - | 36 | - | - | 0 34 | - | - | - | - | - |
4 | 0 | 5 39 | 4 | - | - | - | - | - | - | - | - | - |
5 | 0 6 | - | - | - | - | 3 | - | 3 | - | - | - | - |
6 | - | - | - | - | 37 | - | 37 | - | 0 6 | - | - | - |
7 | - | - | 0 6 | - | - | 3 | - | 39 | - | - | - | - |
8 | - | - | - | - | 37 | - | 1 | - | - | - | 4 10 | - |
9 | - | - | - | - | - | 0 34 | - | - | - | 36 | - | 36 |
10 | - | - | - | - | - | - | - | - | 4 | - | 4 | 1 35 |
11 | - | - | - | - | - | - | - | 30 36 | - | 36 | - | 32 |
12 | - | - | - | - | - | - | - | - | 4 | 5 39 | 8 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 39 | 0 | - | - | - | - | - | - | - | 0 | - | - |
2 | 0 | - | 37 39 | - | - | - | - | - | 37 | - | - | - |
3 | - | 1 3 | - | 0 | - | - | - | 0 | - | - | - | - |
4 | - | - | 0 | - | 36 38 | - | - | - | - | - | 36 | - |
5 | - | - | - | 2 4 | - | 0 | - | - | - | - | - | 0 |
6 | - | - | - | - | 0 | 1 39 | 36 | - | - | - | - | - |
7 | - | - | - | - | - | 4 | - | 34 36 | - | - | - | 32 |
8 | - | - | 0 | - | - | - | 4 6 | - | - | - | 8 | - |
9 | - | 3 | - | - | - | - | - | - | 1 39 | 31 | - | - |
10 | 0 | - | - | - | - | - | - | - | 9 | - | 5 7 | - |
11 | - | - | - | 4 | - | - | - | 32 | - | 33 35 | - | - |
12 | - | - | - | - | 0 | - | 8 | - | - | - | - | 1 39 |