[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 480, 121 ]. See Glossary for some
detail.
PL(LoPr_ 60( 3, 20, 18, 20, 27), [6^40, 20^12]) = PL(ATD[ 12, 2]#ATD[ 40,
6]) = PL(ATD[ 40, 6]#DCyc[ 3])
= PL(ATD[ 40, 6]#DCyc[ 6]) = XI(Cmap(240, 22) { 8, 12| 20}_120) =
XI(Cmap(240, 24) { 8, 12| 20}_120)
= XI(Cmap(240, 45) { 24, 12| 60}_ 40) = XI(Cmap(240, 46) { 24, 12| 60}_ 40) =
PL(CSI(MPS( 4, 20; 3)[ 20^ 4], 3))
= PL(CSI(MPS( 4, 20; 3)[ 20^ 4], 6))
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | - | - | - | 0 | - | 0 | 0 | - | 0 | - | - | - | - |
2 | - | - | - | - | - | - | - | - | - | - | 0 | - | - | - | 0 | 0 | - | - | - | 0 |
3 | - | - | - | - | - | - | - | - | - | - | - | 0 | - | - | 9 | - | 0 | - | - | 1 |
4 | - | - | - | - | - | - | - | - | - | - | 8 | 22 | - | - | - | 0 | 6 | - | - | - |
5 | - | - | - | - | - | - | - | - | - | - | - | 0 | - | - | - | - | 0 | 0 | 0 | - |
6 | - | - | - | - | - | - | - | - | - | - | 8 | - | 14 | 6 | - | 0 | - | - | - | - |
7 | - | - | - | - | - | - | - | - | - | - | - | - | 17 | 9 | - | - | - | 19 | 3 | - |
8 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 20 21 | 4 21 | - |
9 | - | - | - | - | - | - | - | - | - | - | - | 0 | 3 | 3 | - | - | 8 | - | - | - |
10 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 10 21 | - | - | - | - | 2 21 |
11 | 0 | 0 | - | 16 | - | 16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12 | - | - | 0 | 2 | 0 | - | - | - | 0 | - | - | - | - | - | - | - | - | - | - | - |
13 | 0 | - | - | - | - | 10 | 7 | - | 21 | - | - | - | - | - | - | - | - | - | - | - |
14 | 0 | - | - | - | - | 18 | 15 | - | 21 | - | - | - | - | - | - | - | - | - | - | - |
15 | - | 0 | 15 | - | - | - | - | - | - | 3 14 | - | - | - | - | - | - | - | - | - | - |
16 | 0 | 0 | - | 0 | - | 0 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
17 | - | - | 0 | 18 | 0 | - | - | - | 16 | - | - | - | - | - | - | - | - | - | - | - |
18 | - | - | - | - | 0 | - | 5 | 3 4 | - | - | - | - | - | - | - | - | - | - | - | - |
19 | - | - | - | - | 0 | - | 21 | 3 20 | - | - | - | - | - | - | - | - | - | - | - | - |
20 | - | 0 | 23 | - | - | - | - | - | - | 3 22 | - | - | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 51 | - | 0 51 | - |
2 | - | - | - | - | 20 | 0 | 0 | 0 |
3 | - | - | - | - | 20 | 6 | 0 | 6 |
4 | - | - | - | - | - | 1 22 | - | 2 41 |
5 | 0 9 | 40 | 40 | - | - | - | - | - |
6 | - | 0 | 54 | 38 59 | - | - | - | - |
7 | 0 9 | 0 | 0 | - | - | - | - | - |
8 | - | 0 | 54 | 19 58 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | 0 |
2 | - | - | - | - | 0 | 18 | 0 | 18 |
3 | - | - | - | - | 40 | 21 | 0 | 1 |
4 | - | - | - | - | 40 | 27 | 0 | 7 |
5 | 0 | 0 | 20 | 20 | - | - | - | - |
6 | 0 | 42 | 39 | 33 | - | - | - | - |
7 | 0 | 0 | 0 | 0 | - | - | - | - |
8 | 0 | 42 | 59 | 53 | - | - | - | - |