[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 486, 3 ]. See Glossary for some
detail.
{4, 4}_[ 27, 9] = PS( 54, 9; 1) = PS( 27, 18; 1)
= PS( 54, 18; 1) = PS( 18, 27; 1) = PS( 9, 54; 1)
= PS( 18, 54; 1) = UG(ATD[486, 80]) = UG(ATD[486, 81])
= UG(ATD[486, 82]) = MG(Rmap(486,134) { 18, 54| 2}_ 54) = DG(Rmap(486,134) {
18, 54| 2}_ 54)
= MG(Rmap(486,135) { 18, 54| 18}_ 54) = DG(Rmap(486,135) { 18, 54| 18}_ 54) =
DG(Rmap(486,136) { 54, 18| 18}_ 54)
= DG(Rmap(486,137) { 54, 18| 2}_ 54) = DG(Rmap(243, 51) { 18, 27| 18}_ 54) =
XI(Rmap(243, 52) { 27, 18| 18}_ 54)
= XI(Rmap(243, 95) { 18, 54| 2}_ 27) = B({4, 4}_< 18, 9>) = BGCG({4, 4}_< 18,
9>; K1;1)
= AT[486, 26]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 46 | - | - | - | - | - | - | 0 8 |
2 | 0 8 | - | 0 46 | - | - | - | - | - | - |
3 | - | 0 8 | - | 0 46 | - | - | - | - | - |
4 | - | - | 0 8 | - | 0 46 | - | - | - | - |
5 | - | - | - | 0 8 | - | 0 46 | - | - | - |
6 | - | - | - | - | 0 8 | - | 0 46 | - | - |
7 | - | - | - | - | - | 0 8 | - | 0 46 | - |
8 | - | - | - | - | - | - | 0 8 | - | 1 9 |
9 | 0 46 | - | - | - | - | - | - | 45 53 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 1 53 | 0 | - | - | - | - | - | - | 0 |
2 | 0 | 1 53 | 0 | - | - | - | - | - | - |
3 | - | 0 | 1 53 | 0 | - | - | - | - | - |
4 | - | - | 0 | 1 53 | 0 | - | - | - | - |
5 | - | - | - | 0 | 1 53 | 0 | - | - | - |
6 | - | - | - | - | 0 | 1 53 | 0 | - | - |
7 | - | - | - | - | - | 0 | 1 53 | 0 | - |
8 | - | - | - | - | - | - | 0 | 1 53 | 9 |
9 | 0 | - | - | - | - | - | - | 45 | 1 53 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | - | 0 | - | 0 |
2 | 0 | - | 0 | - | 0 | - | - | 0 | - |
3 | - | 0 | - | 4 | - | 0 | - | - | 4 |
4 | 0 | - | 50 | - | 0 | - | 51 | - | - |
5 | - | 0 | - | 0 | - | 0 | - | 51 | - |
6 | - | - | 0 | - | 0 | - | 1 | - | 1 |
7 | 0 | - | - | 3 | - | 53 | - | 0 | - |
8 | - | 0 | - | - | 3 | - | 0 | - | 4 |
9 | 0 | - | 50 | - | - | 53 | - | 50 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | - | - | 0 | 0 |
2 | 0 | - | 1 | 0 | - | - | - | - | 1 |
3 | 0 | 53 | - | 0 | 53 | - | - | - | - |
4 | - | 0 | 0 | - | 0 | 53 | - | - | - |
5 | - | - | 1 | 0 | - | 0 | 53 | - | - |
6 | - | - | - | 1 | 0 | - | 0 | 6 | - |
7 | - | - | - | - | 1 | 0 | - | 7 | 7 |
8 | 0 | - | - | - | - | 48 | 47 | - | 1 |
9 | 0 | 53 | - | - | - | - | 47 | 53 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 1 53 | 0 2 | - | - | - | - | - | - | - |
2 | 0 52 | - | 0 2 | - | - | - | - | - | - |
3 | - | 0 52 | - | 0 2 | - | - | - | - | - |
4 | - | - | 0 52 | - | 0 2 | - | - | - | - |
5 | - | - | - | 0 52 | - | 0 2 | - | - | - |
6 | - | - | - | - | 0 52 | - | 0 2 | - | - |
7 | - | - | - | - | - | 0 52 | - | 0 2 | - |
8 | - | - | - | - | - | - | 0 52 | - | 0 2 |
9 | - | - | - | - | - | - | - | 0 52 | 1 53 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | - | 0 | - | 0 |
2 | 0 | - | 0 | - | 0 | - | - | 0 | - |
3 | - | 0 | - | 22 | - | 0 | - | - | 22 |
4 | 0 | - | 32 | - | 0 | - | 33 | - | - |
5 | - | 0 | - | 0 | - | 0 | - | 33 | - |
6 | - | - | 0 | - | 0 | - | 1 | - | 1 |
7 | 0 | - | - | 21 | - | 53 | - | 0 | - |
8 | - | 0 | - | - | 21 | - | 0 | - | 22 |
9 | 0 | - | 32 | - | - | 53 | - | 32 | - |