C4graphConstructions for C4[ 486, 4 ] = PS(54,9;2)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 486, 4 ]. See Glossary for some detail.

PS( 54, 9; 2) = PS( 54, 9; 4) = PS( 27, 18; 5)

      = PS( 27, 18; 7) = PS( 54, 18; 5) = PS( 54, 18; 7)

      = MSZ ( 54, 9, 17, 4) = MSZ ( 54, 9, 19, 4) = UG(ATD[486, 11])

      = UG(ATD[486, 12]) = MG(Cmap(486,101) { 54, 54| 54}_ 18) = MG(Cmap(486,102) { 54, 54| 54}_ 18)

      = MG(Cmap(486,103) { 54, 54| 54}_ 18) = MG(Cmap(486,104) { 54, 54| 54}_ 18) = DG(Cmap(243, 43) { 54, 27| 54}_ 18)

      = DG(Cmap(243, 44) { 54, 27| 54}_ 18) = B(PS( 27, 9; 2)) = HT[486, 6]

     

Cyclic coverings

mod 54:
123456789
1 - 0 - - 0 0 - - 0
2 0 - - - - - 1 - 1 53
3 - - - 0 0 2 - 0 - -
4 - - 0 - 1 - - 53 51
5 0 - 0 52 53 - - - - -
6 0 - - - - - 51 1 53 -
7 - 53 0 - - 3 - 3 -
8 - - - 1 - 1 53 51 - -
9 0 1 53 - 3 - - - - -

mod 54:
123456789
1 - 0 - 0 - 0 0 - -
2 0 1 53 - - - - - - 53
3 - - - - 0 0 52 - 0
4 0 - - - 51 - 51 - 1
5 - - 0 3 1 53 - - - -
6 0 - 0 - - - - 1 3
7 0 - 2 3 - - - 53 -
8 - - - - - 53 1 1 53 -
9 - 1 0 53 - 51 - - -

mod 54:
123456789
1 - 0 - - 0 0 - - 0
2 0 1 53 - 53 - - - - -
3 - - - 0 - 0 52 0 - -
4 - 1 0 - - 51 - 53 -
5 0 - - - - - 1 1 3 -
6 0 - 0 2 3 - - - - -
7 - - 0 - 53 - - 3 3
8 - - - 1 51 53 - 51 - -
9 0 - - - - - 51 - 1 53