[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 486, 8 ]. See Glossary for some
detail.
PS( 18, 27; 8) = PS( 18, 27; 10) = PS( 9, 54; 17)
= PS( 9, 54; 19) = PS( 18, 54; 17) = PS( 18, 54; 19)
= MSY( 9, 54, 19, 9) = MC3( 18, 27, 1, 8, 10, 18, 1) = UG(ATD[486, 13])
= UG(ATD[486, 14]) = MG(Cmap(486, 86) { 18, 54| 18}_ 54) = MG(Cmap(486, 88) {
18, 54| 18}_ 54)
= DG(Cmap(243, 26) { 18, 27| 18}_ 54) = DG(Cmap(243, 32) { 18, 27| 18}_ 54) =
B(PS( 9, 27; 8))
= HT[486, 7]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | 1 53 | - | 0 | - | - | - | - | 0 | - |
2 | - | 17 37 | - | 0 | - | - | - | - | 0 |
3 | 0 | - | 19 35 | - | 1 | - | - | - | - |
4 | - | 0 | - | 1 53 | - | 37 | - | - | - |
5 | - | - | 53 | - | 17 37 | - | 19 | - | - |
6 | - | - | - | 17 | - | 19 35 | - | 21 | - |
7 | - | - | - | - | 35 | - | 1 53 | - | 21 |
8 | 0 | - | - | - | - | 33 | - | 17 37 | - |
9 | - | 0 | - | - | - | - | 33 | - | 19 35 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | 0 | - | 0 |
2 | - | - | - | 0 | - | 30 | 48 | 0 | - |
3 | - | - | - | 30 | 0 | - | - | 48 | 36 |
4 | - | 0 | 24 | - | - | - | - | 1 | 25 |
5 | 0 | - | 0 | - | - | - | 19 | - | 37 |
6 | 0 | 24 | - | - | - | - | 1 | 43 | - |
7 | 0 | 6 | - | - | 35 | 53 | - | - | - |
8 | - | 0 | 6 | 53 | - | 11 | - | - | - |
9 | 0 | - | 18 | 29 | 17 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 16 | - | - | - | - | - | - | 0 52 |
2 | 0 38 | - | 26 46 | - | - | - | - | - | - |
3 | - | 8 28 | - | 10 12 | - | - | - | - | - |
4 | - | - | 42 44 | - | 26 42 | - | - | - | - |
5 | - | - | - | 12 28 | - | 26 46 | - | - | - |
6 | - | - | - | - | 8 28 | - | 10 12 | - | - |
7 | - | - | - | - | - | 42 44 | - | 26 42 | - |
8 | - | - | - | - | - | - | 12 28 | - | 1 35 |
9 | 0 2 | - | - | - | - | - | - | 19 53 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 | 0 | 0 | 0 | - | - |
2 | - | - | - | - | 38 | 16 | 2 | 0 | - |
3 | - | - | - | - | - | 18 | 0 | 20 | 0 |
4 | 0 | - | - | - | - | - | 21 | 1 | 39 |
5 | 0 | 16 | - | - | - | - | - | 37 | 53 |
6 | 0 | 38 | 36 | - | - | - | - | - | 3 |
7 | 0 | 52 | 0 | 33 | - | - | - | - | - |
8 | - | 0 | 34 | 53 | 17 | - | - | - | - |
9 | - | - | 0 | 15 | 1 | 51 | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | 0 | - | - | 0 | - | 0 |
2 | 0 | - | 1 | - | 1 | - | - | 1 | - |
3 | - | 53 | - | 1 | - | 19 | - | - | 19 |
4 | 0 | - | 53 | - | 37 | - | 39 | - | - |
5 | - | 53 | - | 17 | - | 1 | - | 39 | - |
6 | - | - | 35 | - | 53 | - | 3 | - | 39 |
7 | 0 | - | - | 15 | - | 51 | - | 19 | - |
8 | - | 53 | - | - | 15 | - | 35 | - | 37 |
9 | 0 | - | 35 | - | - | 15 | - | 17 | - |