C4graphConstructions for C4[ 486, 8 ] = PS(18,27;8)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 486, 8 ]. See Glossary for some detail.

PS( 18, 27; 8) = PS( 18, 27; 10) = PS( 9, 54; 17)

      = PS( 9, 54; 19) = PS( 18, 54; 17) = PS( 18, 54; 19)

      = MSY( 9, 54, 19, 9) = MC3( 18, 27, 1, 8, 10, 18, 1) = UG(ATD[486, 13])

      = UG(ATD[486, 14]) = MG(Cmap(486, 86) { 18, 54| 18}_ 54) = MG(Cmap(486, 88) { 18, 54| 18}_ 54)

      = DG(Cmap(243, 26) { 18, 27| 18}_ 54) = DG(Cmap(243, 32) { 18, 27| 18}_ 54) = B(PS( 9, 27; 8))

      = HT[486, 7]

Cyclic coverings

mod 54:
123456789
1 1 53 - 0 - - - - 0 -
2 - 17 37 - 0 - - - - 0
3 0 - 19 35 - 1 - - - -
4 - 0 - 1 53 - 37 - - -
5 - - 53 - 17 37 - 19 - -
6 - - - 17 - 19 35 - 21 -
7 - - - - 35 - 1 53 - 21
8 0 - - - - 33 - 17 37 -
9 - 0 - - - - 33 - 19 35

mod 54:
123456789
1 - - - - 0 0 0 - 0
2 - - - 0 - 30 48 0 -
3 - - - 30 0 - - 48 36
4 - 0 24 - - - - 1 25
5 0 - 0 - - - 19 - 37
6 0 24 - - - - 1 43 -
7 0 6 - - 35 53 - - -
8 - 0 6 53 - 11 - - -
9 0 - 18 29 17 - - - -

mod 54:
123456789
1 - 0 16 - - - - - - 0 52
2 0 38 - 26 46 - - - - - -
3 - 8 28 - 10 12 - - - - -
4 - - 42 44 - 26 42 - - - -
5 - - - 12 28 - 26 46 - - -
6 - - - - 8 28 - 10 12 - -
7 - - - - - 42 44 - 26 42 -
8 - - - - - - 12 28 - 1 35
9 0 2 - - - - - - 19 53 -

mod 54:
123456789
1 - - - 0 0 0 0 - -
2 - - - - 38 16 2 0 -
3 - - - - - 18 0 20 0
4 0 - - - - - 21 1 39
5 0 16 - - - - - 37 53
6 0 38 36 - - - - - 3
7 0 52 0 33 - - - - -
8 - 0 34 53 17 - - - -
9 - - 0 15 1 51 - - -

mod 54:
123456789
1 - 0 - 0 - - 0 - 0
2 0 - 1 - 1 - - 1 -
3 - 53 - 1 - 19 - - 19
4 0 - 53 - 37 - 39 - -
5 - 53 - 17 - 1 - 39 -
6 - - 35 - 53 - 3 - 39
7 0 - - 15 - 51 - 19 -
8 - 53 - - 15 - 35 - 37
9 0 - 35 - - 15 - 17 -