[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 490, 4 ]. See Glossary for some
detail.
{4, 4}_[ 35, 7] = PS( 70, 7; 1) = PS( 35, 14; 1)
= PS( 70, 14; 1) = PS( 14, 35; 1) = PS( 7, 70; 1)
= PS( 14, 70; 1) = UG(ATD[490, 4]) = UG(ATD[490, 5])
= UG(ATD[490, 6]) = MG(Rmap(490, 8) { 14, 70| 14}_ 70) = DG(Rmap(490, 8) {
14, 70| 14}_ 70)
= MG(Rmap(490, 10) { 14, 70| 2}_ 70) = DG(Rmap(490, 10) { 14, 70| 2}_ 70) =
DG(Rmap(490, 12) { 70, 14| 2}_ 70)
= DG(Rmap(490, 13) { 70, 14| 14}_ 70) = DG(Rmap(245, 5) { 14, 35| 14}_ 70) =
XI(Rmap(245, 6) { 35, 14| 14}_ 70)
= XI(Rmap(245, 17) { 14, 70| 2}_ 35) = B({4, 4}_< 21, 14>) = BGCG({4, 4}_< 21,
14>; K1;1)
= AT[490, 6]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | - | 0 46 | - | - | - | - | 0 46 |
2 | 0 24 | - | 0 46 | - | - | - | - |
3 | - | 0 24 | - | 0 46 | - | - | - |
4 | - | - | 0 24 | - | 0 46 | - | - |
5 | - | - | - | 0 24 | - | 0 46 | - |
6 | - | - | - | - | 0 24 | - | 1 25 |
7 | 0 24 | - | - | - | - | 45 69 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | - | 0 50 | - | - | - | - | 0 20 |
2 | 0 20 | - | 0 50 | - | - | - | - |
3 | - | 0 20 | - | 0 50 | - | - | - |
4 | - | - | 0 20 | - | 0 50 | - | - |
5 | - | - | - | 0 20 | - | 0 50 | - |
6 | - | - | - | - | 0 20 | - | 1 21 |
7 | 0 50 | - | - | - | - | 49 69 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | 1 69 | 0 2 | - | - | - | - | - |
2 | 0 68 | - | 0 2 | - | - | - | - |
3 | - | 0 68 | - | 0 2 | - | - | - |
4 | - | - | 0 68 | - | 0 2 | - | - |
5 | - | - | - | 0 68 | - | 0 2 | - |
6 | - | - | - | - | 0 68 | - | 0 2 |
7 | - | - | - | - | - | 0 68 | 1 69 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | 0 | 0 |
2 | 0 | - | 1 | 0 | - | - | 1 |
3 | 0 | 69 | - | 0 | 69 | - | - |
4 | - | 0 | 0 | - | 0 | 46 | - |
5 | - | - | 1 | 0 | - | 47 | 47 |
6 | 0 | - | - | 24 | 23 | - | 1 |
7 | 0 | 69 | - | - | 23 | 69 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | 1 69 | 0 | - | - | - | - | 0 |
2 | 0 | 1 69 | 0 | - | - | - | - |
3 | - | 0 | 1 69 | 0 | - | - | - |
4 | - | - | 0 | 1 69 | 0 | - | - |
5 | - | - | - | 0 | 1 69 | 0 | - |
6 | - | - | - | - | 0 | 1 69 | 63 |
7 | 0 | - | - | - | - | 7 | 1 69 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | - | 0 | 0 | - | - | 0 | 0 |
2 | 0 | - | 1 | 0 | - | - | 1 |
3 | 0 | 69 | - | 0 | 69 | - | - |
4 | - | 0 | 0 | - | 0 | 4 | - |
5 | - | - | 1 | 0 | - | 5 | 5 |
6 | 0 | - | - | 66 | 65 | - | 1 |
7 | 0 | 69 | - | - | 65 | 69 | - |